• Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting From Left to Right Is Online Political Communication More Than an Echo Chamber?. Psychological science.

  • González-Bailón, S., Borge-Holthoefer, J., & Moreno, Y. (2013). Broadcasters and hidden influentials in online protest diffusion. American Behavioral Scientist.

  • González-Bailón, S., & Paltoglou, G. (2015). Signals of public opinion in online communication: A comparison of methods and data sources. The ANNALS of the American Academy of Political and Social Science, 659(1), 95-107.

  • Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets. Cambridge University Press.

  • Matloff, N. (2011). The art of R programming: A tour of statistical software design. No Starch Press.

  • Monroe, B. L., Pan, J., Roberts, M. E., Sen, M., & Sinclair, B. (2015). No! Formal theory, causal inference, and big data are not contradictory trends in political science. PS: Political Science & Politics, 48(01), 71-74.

  • Nagler, J., & Tucker, J. A. (2015). Drawing inferences and testing theories with big data. PS: Political Science & Politics, 48(01), 84-88

  • Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., … & Jebara, T. (2009). Life in the network: the coming age of computational social science. Science 323(5915), 721.

  • Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Albertson, B., … & Rand, D. (2014). Topic models for open ended survey responses with applications to experiments. American Journal of Political Science, 58, 1064-1082.

  • Steinert-Threlkeld, Z. C., Mocanu, D., Vespignani, A., & Fowler, J. (2015). Online social networks and offline protest. EPJ Data Science, 4(1), 1.

  • Wickham, H., & Grolemund, G. (2016). R for Data Science. O’Reilly