Quantitative Text Analysis.
Applications to Social Media Research

Pablo Barbera
London School of Economics
www.pablobarbera.com

Course website:
pablobarbera.com/text-analysis-vienna

APIs

APls

API = Application Programming Interface; a set of structured
http requests that return data in a lightweight format.

HTTP = Hypertext Transfer Protocol; how browsers and e-mail
clients communicate with servers.

API provider

(e.g., Twitter, Yahoo!) APT user
‘ Web application] ‘ User application ’
N
: : REST, SOAP, ... : 1
i | Web service / Data APT | —————————— | User software (e.g.,, R) [:
3 P o

API wrapper software

Source: Munzert et al, 2014, Figure 9.8

APls

Types of APls:

1. RESTful APIs: queries for static information at current
moment (e.g. user profiles, posts, etc.)

2. Streaming APIs: changes in users’ data in real time (e.g.
new tweets, weather alerts...)
APIs generally have extensive documentation:

» Written for developers, so must be understandable for
humans

» What to look for: endpoints and parameters.

Most APls are rate-limited:

» Restrictions on number of API calls by user/IP address and
period of time.

» Commercial APls may impose a monthly fee

Connecting with an API

Constructing a REST API call:

» Baseline URL endpoint:
https://maps.googleapis.com/maps/api/geocode/ json

» Parameters: ?address=budapest
> Authentication token (optional): skey=XXXXX

From R, use httr package to make GET request:

library (httr)

r <— GET(
"https://maps.googleapis.com/maps/api/geocode/json",
query=1list (address="budapest"))

If request was successful, returned code will be 200, where
4xx indicates client errors and 5xx indicates server errors.
If you need to attach data, use POST request.

"results" : [
{
"address_components"
{
"long_name"
"short_name"
"types" : ["1

"long_name"
"short_name"

"types" : ["country",

}
1,
"formatted_address"
"geometry" : {
"bounds" : {
"northeast"
"lat" : 47.
"lng" : 19.
}
"southwest"
"lat" : 47.
"lng" : 18.
}
i
"location" : {
"lat" 47.497
"lng" 19.040

I

[

"Budapest",
"Budapest",

ocality", "political"

"Hungary",
"HU",

"Budapest,

{
6130119,
3345049

{
349415,
9261011

912,
235

"political"]

Hungary",

"location_type"
"viewport" : {
"northeast"
"latn
"lng"
i
"southwest"
"lat"
"lng"

b
"place_id"
"types" : [

1,

"status" "OR"

47.
19.

47.
18.

"APPROXIMATE",

{
6130119,
3345049

{
349415,
9261011

"ChIJyc_UOTTDQUcCRYBEeDCnEAAQ",
"locality",

"political”]

JSON

Response is often in JSON format (Javascript Object Notation).

» Type: content (r, "text")

» Data stored in key-value pairs. Why? Lightweight, more
flexible than traditional table format.

» Curly brackets embrace objets; square brackets enclose
arrays (vectors)

» Use fromJsSON function from jsonlite package to read
JSON data into R

» But many packages have their own specific functions to
read data in JSON format; content (r, "parsed")

https://maps.googleapis.com/maps/api/geocode/json?address=budapest

Authentication

v

Many APlIs require an access key or token
An alternative, open standard is called OAuth

Connections without sharing username or password, only
temporary tokens that can be refreshed

httr package in R implements most cases (examples)

v

v

v

https://github.com/hadley/httr/tree/master/demo

R packages

Before starting a new project, worth checking if there’s already
an R package for that API. Where to look?

» CRAN Web Technologies Task View (but only packages
released in CRAN)

» GitHub (including unreleased packages and most recent
versions of packages)

» rOpenSci Consortium
Also see this great list of APIs in case you need inspiration.

https://cran.r-project.org/web/views/WebTechnologies.html
https://ropensci.org/
https://github.com/toddmotto/public-apis

Why APIs?

Advantages:

» ‘Pure’ data collection: avoid malformed HTML, no legal
issues, clear data structures, more trust in data collection...

» Standardized data access procedures: transparency,
replicability
» Robustness: benefits from ‘wisdom of the crowds’
Disadvantages
» They’re not too common (yet!)
» Dependency on API providers
» Lack of natural connection to R

Decisions, decisions...

World Wide Web

!

Try harder...] e Y e

Did you identify useful data on the

Lves

Get familiar with API output and
build your own wrapper

Is there an APT which offers an
interface to a relevant database?

Is there an R package or project that

[

Is there someone who grants you

“—»[Check out how it works and use it
behind the data? [

ves | Retricve the data from your personal

contact and save a lot of time

[

Does robots.tzt permit bot action on | _ves
| : —
files you are interested in?

Is there a robots.tzt?

=

in mind?

“Are there terms of use which explicitly

deny the use of the webpage you have

[Do you assume a database to exist
[Start scraping and consider all of the

|—

Reconsider your task. Speak to the .
owner of the data if possible. If you b
nevertheless start scraping, take into

account the ‘Scraping dos and don’ts’
on the right.

Scraping dos and don’ts

© Stay identifiable with User-agent
and From header fields, i.e. do
not masquerade behind proxies or
browser-like user-agents

Reduce traffic: scrape as few
as possible, use gzip if avail-
able, choose lightweight formats,
monitor changes before scraping
(Last-Modified header field)

Do not bombard the server with un-
necessary requests

@

@

