
RECSM Summer School:
Social Media and Big Data Research

Pablo Barberá
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Discovery in Large-Scale
Social Media Data



Human behaviour is characterized by connections to others



Digital technologies have led to an explosion in the availability
of networked data
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(Quick) introduction to social network analysis

What we will cover:
I Familiarity with language of social network analysis

I Two key dimensions to analyze:

I Centrality: who is most influential in a network?
I Structure: how to discover communities in a network?

I Characteristics of networks that emerge in digital
environments, such as social media sites
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Basic concepts

I Node (vertex): each of the units in the network

I Edge (tie): connection between nodes

I Undirected: symmetric connection, represented by lines
I Directed: imply direction, represented by arrows

I Unweighted: all edges have same strength
I Weighted: some edges have more strength than others

I A network consists of a set of nodes and edges
i.e. a set of actors and their relationships
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Basic concepts

Network Visualization

Jennifer

Josh

Evgeniia

Whitney

Tom

Adjacency Matrix

P J E W T
P 0 1 1 0 0
J 1 0 0 1 1
E 1 0 0 1 0
W 0 1 1 0 1
T 0 1 0 1 0



Basic concepts

Network Visualization

Jennifer

Josh

Evgeniia

Whitney

Tom

Edgelist

Node1 Node2
1 Paul Josh
2 Paul Evgeniia
3 Josh Whitney
4 Josh Tom
5 Whitney Tom
6 Evgeniia Whitney



Types of social media networks

I Internet: websites / hyperlinks

I Twitter: users / retweets
I Twitter: users / following connections
I Twitter: hashtags / co-appeareance
I Facebook: friends / friendship connections
I Reddit: subreddits / users in common
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Social network analysis: key
dimensions of analysis



Node centrality

How to measure actor influence or importance in a network?

Two main conceptual definition of centrality:

1. Degree centrality: number of connections for each node
(potential for direct reach)

I Indegree: incoming connections
I Outdegree: outgoing connections

2. Betweenness centrality: gatekeeping potential

I How well a node connects different parts of the network
I Fraction of shortest paths between any two nodes on which

a particular node lies

→ Other measures:

I Closeness centrality: broadcasting potential
I Eigenvector centrality and coreness: centrality

measured as being connected to other central neighbors
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Florentine family marriages in the 15th century

Source: Padgett (1993) and Sinclair (2016)



Occupy Wall Street Twitter networks

Source: Lotan (2011)



Protest networks on Twitter

Source: González-Bailón et al (2013)



Occupy Wall Street Twitter networks

Source: González-Bailón and Wang (2016)



Discovery in large-scale networks

How to understand the structure of large-scale networks?
I Latent communities or clusters

I Community detection algorithms
I Finding groups of nodes that densely connected internally,

more so than to the rest of the networks
I Overlap with shared visible or latent similarities (homophily)
I Also hierarchy: core-periphery detection
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Community detection

Community structure:
I Network nodes often cluster

into tightly-knit groups with a
high density of within-group
edges and a lower density of
between-group edges

I Modularity score: measures
clustering of nodes compared
to random network of same
size

I Many different community
detection algorithms based on
different assumptions

Source: Newman (2012)



Network hierarchy

I Intuition

I Large-scale networks have hierarchical properties
I Network core:

1. Centrality : high relative importance in network
2. Connectivity : many possible distinct paths between

individuals
(not captured by simple topological measures)

I k-core decomposition

I Algorithm to partition a network in nested shells of
connectivity

I The k -core of a graph is the maximal subgraph in which
every node has at least degree k

I Many applications; scales well to large networks.
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k-core decomposition

k -core decomposition
A k -core analysis of AS and IR Internet graphs

Network fingerprints

k -core decomposition
Examples

A graph :

3−core

2−core

1−core

J.I.Alvarez-Hamelin :: ECCS’05 Analysis and visualization using k -cores

Source: Alvarez-Hamelin et al, 2005
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1-shell

2-shell

20-shell

3-shell

60-shell

80-shell

40-shell

120-shell

100-shell

activity
(no. of tweets)

periphery

core

in Taksim

18%

.25%

max

min

RTs

periphery to core

periphery to periphery

k-core decomposition of #OccupyGezi network


