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Supervised machine learning

Goal: classify documents into pre existing categories.

e.g. authors of documents, sentiment of tweets, ideological position of parties
based on manifestos, tone of movie reviews...

What we need:

» Hand-coded dataset (labeled), to be split into:
» Training set: used to train the classifier
» Validation/Test set: used to validate the classifier
» Method to extrapolate from hand coding to unlabeled
documents (classifier):
» Naive Bayes, regularized regression, SVM, K-nearest
neighbors, BART, ensemble methods...
» Approach to validate classifier: cross-validation

» Performance metric to choose best classifier and avoid
overfitting: confusion matrix, accuracy, precision, recall...
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Supervised v. unsupervised methods compared

» The goal (in text analysis) is to differentiate documents
from one another, treating them as “bags of words”
» Different approaches:
» Supervised methods require a training set that exemplify
contrasting classes, identified by the researcher
» Unsupervised methods scale documents based on patterns
of similarity from the term-document matrix, without
requiring a training step
» Relative advantage of supervised methods:
You already know the dimension being scaled, because you set it in the
training stage
» Relative disadvantage of supervised methods:
You must already know the dimension being scaled, because you have
to feed it good sample documents in the training stage
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Supervised learning v. dictionary methods

» Dictionary methods:

» Advantage: not corpus-specific, cost to apply to a new
corpus is trivial

» Disadvantage: not corpus-specific, so performance on a
new corpus is unknown (domain shift)

» Supervised learning can be conceptualized as a
generalization of dictionary methods, where features
associated with each categories (and their relative weight)
are learned from the data

» By construction, they will outperform dictionary methods in

classification tasks, as long as training sample is large
enough



Dictionaries vs supervised learning

Lexicons’ Accuracy in Document Classification
Compared to Machine-Learning Approach

BBC Twitter Digg
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Source: Gonzalez-Bailén and Paltoglou (2015)
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Creating a labeled set

How do we obtain a labeled set?

» External sources of annotation

» Self-reported ideology in users’ profiles
» Gender in social security records

» Expert annotation

» “Canonical” dataset: Comparative Manifesto Project
» In most projects, undergraduate students (expertise comes
from training)

» Crowd-sourced coding

» Wisdom of crowds: aggregated judgments of non-experts
converge to judgments of experts at much lower cost
(Benoit et al, 2016)

» Easy to implement with CrowdFlower or MTurk



Code the Content of a Sample of Tweets

Instructions «

In this job, you will be presented with tweets about the recent protests related to race and law enforcement in the U.S.

You will have to read the tweet and answer a set of questions about its content.

Read the tweet below paying close attention to detail:
Tweet ID: 447

El Cid W Follow
@JohnGalt2112

i#fBlackLivesMatter don't matter unless they are
taken by a white cop.
4:23 PM - 13 Dec 2014

- 3%

Is this tweet related to the ongoing debate about law enforcement and race in the United States?
"~ Yes
~ No
~ Don't Know



Crowd-sourced text analysis (Benoit et al, 2016 APSR)

FIGURE 3. Expert and Crowd-sourced Estimates of Economic and Social Policy Positions
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Crowd-sourced text analysis (Benoit et al, 2016 APSR)

FIGURE 5. Standard Errors of Manifesto-level Policy Estimates as a Function of the Number of
Workers, for the Oversampled 1987 and 1997 Manifestos
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Performance metrics

Confusion matrix:

Actual label

Classification (algorithm)

Negative

Positive

False negative
True positive

TrueNeg + TruePos

Negative True negative
Positive False positive
Accuracy = TrueNeg +
Precisionpogitive = TruePos
positive ™ TryePos + FalsePos
TruePos

Recaupositive =

TruePos + FalseNeg

TruePos + FalseNeg + FalsePos



Performance metrics: an example

Confusion matrix:

Actual label
Classification (algorithm) | Negative | Positive
Negative 800 100
Positive 50 50




Performance metrics: an example

Confusion matrix:

Actual label
Classification (algorithm) | Negative | Positive
Negative 800 100
Positive 50 50
800 + 50
Aceuracy = 26650 1100+ 50 00
.. 50
Precisionpesitive = 50 £ 50 =0.50
50
Recallpositive = m =0.33
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Measuring performance

» Classifier is trained to maximize in-sample performance
» But generally we want to apply method to new data
» Danger: overfitting

» Model is too complex,
High Biap Low Bins describes noise rather than
Low Variance High Variance Signa| (Bias_variance

trade-off)
W > Focus on features that
- perform well in labeled data

but may not generalize (e.g.
unpopular hashtags)

Prediction Error

Training Sample

Low High
Model Complexity » In-sample performance better

than out-of-sample
performance
» Solutions?
» Randomly split dataset into training and test set
» Cross-validation



Cross-validation

Intuition:
» Create K training and test sets (“folds”) within training set.
» For each k in K, run classifier and estimate performance in
test set within fold.

» Choose best classifier based on cross-validated
performance

i ] [z ] [rows | [Crome | ooz ]

Training Training Training Training
Training | "I'uﬁ Training Training Training
Training Training - Training Training

Training Training Training Training
Training Training Training Training Test

Prediction Statistics

Complete
Data
B2




Example: Theocharis et al (2016 JOC)

Why do politicians not take full advantage of interactive
affordances of social media?

A politician’s incentive structure
Democracy — Dialogue > Mobilisation > Marketing
Politician — Marketing > Mobilisation > Dialogue*

H1: Politicians make broadcasting rather than engaging use of
Twitter

H2: Engaging style of tweeting is positively related to impolite
or uncivil responses



Data collection and case selection

Data: European Election Study 2014, Social Media Study
» List of all candidates with Twitter accounts in 28 EU
countries
» 2,482 out of 15,527 identified MEP candidates (16%)

» Collaboration with TNS Opinion to collect all tweets by
candidates and tweets mentioning candidates (tweets,
retweets, @-replies), May 5th to June 1st 2014.



Data collection and case selection

Data: European Election Study 2014, Social Media Study
» List of all candidates with Twitter accounts in 28 EU
countries
» 2,482 out of 15,527 identified MEP candidates (16%)

» Collaboration with TNS Opinion to collect all tweets by
candidates and tweets mentioning candidates (tweets,
retweets, @-replies), May 5th to June 1st 2014.

Case selection: expected variation in politeness/civility

Received bailout Did not receive bailout

High support for EU | Spain (55.4%) Germany (68.5%)
Low support for EU | Greece (43.8%) UK (41.4%)

(% indicate proportion of country that considers the EU to be “a good thing”)



Data collection and case selection

Data coverage by country

Country Lists Candidates on Twitter Tweets
Germany 9 501 123 (25%) 86,777
Greece 9 359 99 (28%) 18,709
Spain 11 648 221 (34%) 463,937
UK 28 733 304 (41%) 273,886
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Coding tweets

Coded data: random sample of ~7,000 tweets from each
country, labeled by undergraduate students:

1. Politeness

» Polite: tweet adheres to politeness standards.

» Impolite: ill-mannered, disrespectful, offensive language...
2. Communication style

» Broadcasting: statement, expression of opinion

» Engaging: directed to someone else/another user
3. Political content: moral and democracy

» Tweets make reference to: freedom and human rights,
traditional morality, law and order, social harmony,
democracy...

Incivility = impoliteness + moral and democracy



Coding tweets

Coding process: summary statistics

Germany Greece Spain UK
Coded by 1/by 2 2947/2819 2787/2955 3490/1952 3189/3296
Total coded 5766 5742 5442 6485
Impolite 399 1050 121 328
Polite 5367 4692 5321 6157
% Agreement 92 80 93 95
Krippendorf/Maxwell | 0.30/0.85  0.26/0.60  0.17/0.87  0.54/0.90
Broadcasting 2755 2883 1771 1557
Engaging 3011 2859 3671 4928
% Agreement 79 85 84 85
Krippendorf/Maxwell | 0.58/0.59  0.70/0.70  0.66/0.69  0.62/0.70
Moral/Dem. 265 204 437 531
Other 5501 5538 5005 5954
% Agreement 95 97 96 90
Krippendorf/Maxwell | 0.50/0.91 0.53/0.93 0.41/0.92 0.39/0.81




Machine learning classification of tweets

Coded tweets as training dataset for a machine learning
classifier:

1. Text preprocessing: lowercase, remove stopwords and
punctuation (except # and @), transliterating to ASCII,
stem, tokenize into unigrams and bigrams. Keep tokens in
2+ tweets but <90%.



Machine learning classification of tweets

Coded tweets as training dataset for a machine learning
classifier:

1. Text preprocessing: lowercase, remove stopwords and
punctuation (except # and @), transliterating to ASCII,
stem, tokenize into unigrams and bigrams. Keep tokens in
2+ tweets but <90%.

2. Train classifier: logistic regression with L2 regularization
(ridge regression), one per language and variable



Machine learning classification of tweets

Coded tweets as training dataset for a machine learning
classifier:

1. Text preprocessing: lowercase, remove stopwords and
punctuation (except # and @), transliterating to ASCII,
stem, tokenize into unigrams and bigrams. Keep tokens in
2+ tweets but <90%.

2. Train classifier: logistic regression with L2 regularization
(ridge regression), one per language and variable

3. Evaluate classifier: compute accuracy using 5-fold
crossvalidation



Machine learning classification of tweets

Classifier performance (5-fold cross-validation)
UK  Spain Greece Germany

Communication Accuracy | 0.821 0.775 0.863 0.806

Style Precision | 0.837 0.795 0.838 0.818

Recall 0.946 0.890 0.894 0.832
Polite vs. Accuracy | 0.954 0.976 0.821 0.935
impolite Precision | 0.955 0.977 0.849 0.938

Recall 0.998 1.000 0.953 0.997

Morality and Accuracy | 0.895 0.913 0.957 0.922
Democracy Precision | 0.734 0.665 0.851 0.770
Recall 0.206 0.166 0.080 0.061




Top predictive n-grams

Broadcasting

Engaging

just, hack, #votegreen2014, :, and, @ ’, tonight, candid,
up, tonbridg, vote @, im @, follow ukip, ukip @, #telleu-
rop, angri, #ep2014, password, stori, #vote2014, team,
#labourdoorstep, crimin, bbc news

@ thank, @ ye, your, @ it', @ mani, @ pleas, u, @ hi,
@ congratul, :), index, vote # skip, @ good, fear, cheer,
haven't, lol, @ i'v, you'v, @ that’, choice, @ wa, @ who,
@ hope

Impolite

Polite

cunt, fuck, twat, stupid, shit, dick, tit, wanker, scumbag,
moron, cock, foot, racist, fascist, sicken, fart, @ fuck, ars,
suck, nigga, nigga ?, smug, idiot, @arsehol, arsehol

@ thank, eu, #ep2014, thank, know, candid, veri, politi-
cian, today, way, differ, europ, democraci, interview, time,
tonight, @ think, news, european, sorri, congratul, good,
:, democrat, seat

Moral/Dem.

Others

democraci, polic, freedom, media, racist, gay, peac, fraud,
discrimin, homosexu, muslim, equal, right, crime, law, vi-
olenc, constitut, faith, bbc, christian, marriag, god, cp,
racism, sexist

@ ha, 2, snp, nice, tell, eu, congratul, campaign, leav,
alreadi, wonder, vote @, ;), hust, nh, brit, tori, deliv, bad,
immigr, #ukip, live, count, got, roma




Predictive validity

Citizens are more likely to respond to candidates when they
adopt an engaging style
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Results: H1

Proportion of engaging tweets sent and impolite tweets
received, by candidate and country

Engaging (based on candidates) Impolite (based on public)
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Results: H2

Is engaging style positively related to impolite responses?

Three levels of analysis:
1. Across candidates: candidates who send more engaging
tweets receive more impolite responses.

2. Within candidates, over time: the number of impolite
responses increases during the campaign for candidates
who send more engaging tweets

3. Across tweets: tweets that are classified as engaging
tend to receive more impolite responses
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Types of classifiers

General thoughts:
» Trade-off between accuracy and interpretability
» Parameters need to be cross-validated

Frequently used classifiers:
» Naive Bayes
Regularized regression
SVM
Others: k-nearest neighbors, tree-based methods, etc.
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Regularized regression
Assume we have:
» i=1,2,...,Ndocuments
» Each documentiisinclass y;=0or y; =1
» j=1,2,...,J unique features
» And x; as the count of feature j in document /

We could build a linear regression model as a classifier, using
the values of 3y, 51, ..., By that minimize:

N J 2
RSS =Y (Yi — Bo — Zﬁjxij)
= j=1

But can we?
» If J > N, OLS does not have a unique solution

» Even with N > J, OLS has low bias/high variance
(overfitting)



Regularized regression

What can we do? Add a penalty for model complexity, such that
we now minimize:

™M=

2
J
(y/ Bo — Z /Bjxlj) + A Z 5/-2 — ridge regression

i=1 Jj=1 Jj=1

or

M=

2
J
(y/ o — Z @XU) +A Z |Bj| — lasso regression

i=1 Jj=1 J=1

where ) is the penalty parameter (to be estimated)
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Regularized regression

Why the penalty (shrinkage)?
» Reduces the variance
» Identifies the model if J > N
» Some coefficients become zero (feature selection)

The penalty can take different forms:
» Ridge regression: A Z/‘-; sz with A > 0; and when A =0
becomes OLS
» Lasso A 2}121 |3j| where some coefficients become zero.

> Elastic Net: Ay 3L 4 82 + X2 374 8| (best of both
worlds?)

How to find best value of A\? Cross-validation.
Evaluation: regularized regression is easy to interpret, but often
outperformed by more complex methods.



