We’ll now turn to a different type of Twitter data – static data, either recent tweets or user-level information. This type of data can be retrieved with Twitter’s REST API. We will use the tweetscores
package here – this is a package that I created to facilitate the collection and analysis of Twitter data.
It is possible to download recent tweets, but only up those less than 7 days old, and in some cases not all of them.
load("~/my_oauth")
library(tweetscores)
## Loading required package: R2WinBUGS
## Loading required package: coda
## Loading required package: boot
## ##
## ## tweetscores: tools for the analysis of Twitter data
## ## Pablo Barbera (LSE)
## ## www.tweetscores.com
## ##
library(streamR)
## Loading required package: RCurl
## Loading required package: bitops
## Loading required package: rjson
## Warning: package 'rjson' was built under R version 3.4.4
## Loading required package: ndjson
## Warning: package 'ndjson' was built under R version 3.4.4
searchTweets(q=c("kennedy", "supreme court"),
filename="../data/kennedy-tweets.json",
n=1000, until="2018-07-01",
oauth=my_oauth)
## 100 tweets. Max id: 1013210573645938688
## 148 hits left
## 200 tweets. Max id: 1013210313162883072
## 147 hits left
## 300 tweets. Max id: 1013210021675577344
## 146 hits left
## 400 tweets. Max id: 1013209744461348864
## 145 hits left
## 500 tweets. Max id: 1013209510113107968
## 144 hits left
## 600 tweets. Max id: 1013209268152135680
## 143 hits left
## 700 tweets. Max id: 1013209045967212544
## 142 hits left
## 800 tweets. Max id: 1013208803217567744
## 141 hits left
## 900 tweets. Max id: 1013208558740140032
## 140 hits left
## 1000 tweets. Max id: 1013208361247100928
tweets <- parseTweets("../data/kennedy-tweets.json")
## 1000 tweets have been parsed.
What are the most popular hashtags?
library(stringr)
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #MN08 #Election2018 #Minnesota #Trump #MNprimary
## 21 19 19 14 13
## #MNpol
## 10
You can check the documentation about the options for string search here.
This is how you would extract information from user profiles:
wh <- c("realDonaldTrump", "POTUS", "VP", "FLOTUS")
users <- getUsersBatch(screen_names=wh,
oauth=my_oauth)
## 1--4 users left
str(users)
## 'data.frame': 4 obs. of 9 variables:
## $ id_str : chr "818910970567344128" "25073877" "822215679726100480" "818876014390603776"
## $ screen_name : chr "VP" "realDonaldTrump" "POTUS" "FLOTUS"
## $ name : chr "Vice President Mike Pence" "Donald J. Trump" "President Trump" "Melania Trump"
## $ description : chr "Vice President Mike Pence. Husband, father, & honored to serve as the 48th Vice President of the United States."| __truncated__ "45th President of the United States of America\U0001f1fa\U0001f1f8" "45th President of the United States of America, @realDonaldTrump. Tweets archived: https://t.co/eVVzoBb3Zr" "This account is run by the Office of First Lady Melania Trump. Tweets may be archived. More at https://t.co/eVVzoBb3Zr"
## $ followers_count: int 6384634 53219516 23538114 10679230
## $ statuses_count : int 4380 38100 3349 327
## $ friends_count : int 11 47 39 6
## $ created_at : chr "Tue Jan 10 20:02:44 +0000 2017" "Wed Mar 18 13:46:38 +0000 2009" "Thu Jan 19 22:54:28 +0000 2017" "Tue Jan 10 17:43:50 +0000 2017"
## $ location : chr "Washington, D.C." "Washington, DC" "Washington, D.C." "Washington, D.C."
Which of these has the most followers?
users[which.max(users$followers_count),]
## id_str screen_name name
## 2 25073877 realDonaldTrump Donald J. Trump
## description
## 2 45th President of the United States of America\U0001f1fa\U0001f1f8
## followers_count statuses_count friends_count
## 2 53219516 38100 47
## created_at location
## 2 Wed Mar 18 13:46:38 +0000 2009 Washington, DC
users$screen_name[which.max(users$followers_count)]
## [1] "realDonaldTrump"
Download up to 3,200 recent tweets from a Twitter account:
getTimeline(filename="../data/realDonaldTrump.json", screen_name="realDonaldTrump", n=1000, oauth=my_oauth)
## 200 tweets. Max id: 1008725438972211200
## 883 hits left
## 400 tweets. Max id: 1002510522032541701
## 882 hits left
## 600 tweets. Max id: 994182263960162304
## 881 hits left
## 800 tweets. Max id: 985504808646971392
## 880 hits left
## 1000 tweets. Max id: 973187513731944448
What are the most common hashtags?
tweets <- parseTweets("../data/realDonaldTrump.json")
## 1000 tweets have been parsed.
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #MAGA #RightToTry #TaxDay #G7Summit #DrainTheSwamp
## 22 4 4 3 2
## #MemorialDay
## 2
Download friends and followers:
followers <- getFollowers("MethodologyLSE",
oauth=my_oauth)
## 12 API calls left
## 1389 followers. Next cursor: 0
## 11 API calls left
friends <- getFriends("MethodologyLSE",
oauth=my_oauth)
## 8 API calls left
## 121 friends. Next cursor: 0
## 7 API calls left
What are the most common words that friends of the LSE Methodology Twitter account use to describe themselves on Twitter?
# extract profile descriptions
users <- getUsersBatch(ids=friends, oauth=my_oauth)
## 1--121 users left
## 2--21 users left
# create table with frequency of word use
library(quanteda)
## Warning: package 'quanteda' was built under R version 3.4.4
## Package version: 1.3.0
## Parallel computing: 2 of 4 threads used.
## See https://quanteda.io for tutorials and examples.
##
## Attaching package: 'quanteda'
## The following object is masked from 'package:utils':
##
## View
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, remove=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"),
remove_punct=TRUE)
topfeatures(dfm, n = 30)
## lse research science london school economics
## 48 39 30 27 25 25
## political social department centre public policy
## 24 21 14 11 11 11
## news teaching events lse's university uk
## 11 10 10 10 9 8
## twitter account us society official programme
## 8 8 8 8 8 7
## institute data politics analysis academic european
## 7 7 7 6 6 6
# create wordcloud
par(mar=c(0,0,0,0))
textplot_wordcloud(dfm, rotation=0, min_size=1, max_size=5, max_words=100)
The tweetscores
package also includes functions to replicate the method developed in the Political Analysis paper Birds of a Feather Tweet Together. Bayesian Ideal Point Estimation Using Twitter Data. For an application of this method, see also this Monkey Cage blog post.
# download list of friends for an account
user <- "p_barbera"
friends <- getFriends(user, oauth=my_oauth)
## 7 API calls left
## 1330 friends. Next cursor: 0
## 6 API calls left
# estimating ideology with MCMC methods
results <- estimateIdeology(user, friends, verbose=FALSE)
## p_barbera follows 15 elites: BarackObama, nytimes, maddow, RepKarenBass, MaxineWaters, brianstelter, carr2n, chucktodd, fivethirtyeight, NickKristof, nytgraphics, nytimesbits, NYTimeskrugman, nytlabs, thecaucus
# trace plot to monitor convergence
tracePlot(results, "theta")
# comparing with other ideology estimates
plot(results)
## Warning: Ignoring unknown parameters: width
The REST API offers also a long list of other endpoints that could be of use at some point, depending on your research interests.
users <- searchUsers(q="london school of economics", count=100, oauth=my_oauth)
users$screen_name[1:10]
## [1] "LSEnews" "LSEGovernment" "LSEManagement" "StudyLSE"
## [5] "LSEIRDept" "kenbenoit" "Thomgua" "SJRickard"
## [9] "MethodologyLSE" "LSEMaths"
# Downloading tweets when you know the ID
getStatuses(ids=c("474134260149157888", "266038556504494082"),
filename="../data/old-tweets.json",
oauth=my_oauth)
## 897 API calls left
## 896 API calls left
parseTweets("../data/old-tweets.json")
## 2 tweets have been parsed.
## text
## 1 Are you allowed to impeach a president for gross incompetence?
## 2 The electoral college is a disaster for a democracy.
## retweet_count favorite_count favorited truncated id_str
## 1 NA NA FALSE FALSE 474134260149157888
## 2 NA NA FALSE FALSE 266038556504494082
## in_reply_to_screen_name
## 1 NA
## 2 NA
## source
## 1 <a href="http://twitter.com/download/android" rel="nofollow">Twitter for Android</a>
## 2 <a href="http://twitter.com" rel="nofollow">Twitter Web Client</a>
## retweeted created_at in_reply_to_status_id_str
## 1 FALSE Wed Jun 04 10:23:11 +0000 2014 NA
## 2 FALSE Wed Nov 07 04:45:09 +0000 2012 NA
## in_reply_to_user_id_str lang listed_count verified location
## 1 NA en 90053 TRUE Washington, DC
## 2 NA en 90053 TRUE Washington, DC
## user_id_str
## 1 25073877
## 2 25073877
## description
## 1 45th President of the United States of America\U0001f1fa\U0001f1f8
## 2 45th President of the United States of America\U0001f1fa\U0001f1f8
## geo_enabled user_created_at statuses_count
## 1 TRUE Wed Mar 18 13:46:38 +0000 2009 38100
## 2 TRUE Wed Mar 18 13:46:38 +0000 2009 38100
## followers_count favourites_count protected user_url
## 1 53219524 25 FALSE https://t.co/OMxB0x7xC5
## 2 53219524 25 FALSE https://t.co/OMxB0x7xC5
## name time_zone user_lang utc_offset friends_count
## 1 Donald J. Trump NA en NA 47
## 2 Donald J. Trump NA en NA 47
## screen_name country_code country place_type full_name place_name
## 1 realDonaldTrump NA NA NA NA NA
## 2 realDonaldTrump NA NA NA NA NA
## place_id place_lat place_lon lat lon expanded_url url
## 1 NA NaN NaN NA NA NA NA
## 2 NA NaN NaN NA NA NA NA
# download user information from a list
MCs <- getList(list_name="new-members-of-congress",
screen_name="cspan", oauth=my_oauth)
## 897 API calls left
## 20 users in list. Next cursor: 5427698142933319684
## 896 API calls left
## 40 users in list. Next cursor: 4611686021745187729
## 895 API calls left
## 60 users in list. Next cursor: 0
## 894 API calls left
head(MCs)
## id id_str name screen_name
## 1 8.272798e+17 827279765287559171 Rep. Mike Johnson RepMikeJohnson
## 2 8.235530e+17 823552974253342721 Anthony G. Brown RepAnthonyBrown
## 3 8.171385e+17 817138492614524928 Ted Budd RepTedBudd
## 4 8.170763e+17 817076257770835968 Adriano Espaillat RepEspaillat
## 5 8.170502e+17 817050219007328258 Rep. Blunt Rochester RepBRochester
## 6 8.168339e+17 816833925456789505 Nanette D. Barragán RepBarragan
## location
## 1 Washington, DC
## 2 Washington, DC
## 3 Davie County, North Carolina
## 4 https://www.facebook.com/Congr
## 5 Delaware, USA - Washington, DC
## 6 San Pedro, CA
## description
## 1 Proudly serving Louisiana's 4th Congressional District. Member on @HouseJudiciary & @NatResources.
## 2 Congressman proudly representing Maryland's Fourth District. Member of @HASCDemocrats & @NRDems. Father, husband & retired @USArmyReserve Colonel
## 3 Proudly serving the 13th district of North Carolina. #NC13
## 4 U. S. Representative proudly serving New York’s 13th Congressional District. Follow my work in Washington and #NY13
## 5 Official Twitter page for U.S. Representative Lisa Blunt Rochester (D-DE). Tweets from Rep. Blunt Rochester signed -LBR.
## 6 Official account. Honored to represent California's 44th Congressional District. #CA44 Member of the @HispanicCaucus @USProgressives @Dodgers fan.
## url followers_count friends_count
## 1 https://t.co/qLAyhrFbRl 3266 401
## 2 https://t.co/2u5X332ICM 9562 832
## 3 https://t.co/VTsvWe0pia 5298 195
## 4 https://t.co/lcRqmQFAbz 10660 1248
## 5 https://t.co/Fe3XCG51wO 7057 315
## 6 https://t.co/Mt3nPi7hSH 8065 603
## created_at time_zone lang
## 1 Thu Feb 02 22:17:20 +0000 2017 NA en
## 2 Mon Jan 23 15:28:24 +0000 2017 NA en
## 3 Thu Jan 05 22:39:33 +0000 2017 NA en
## 4 Thu Jan 05 18:32:15 +0000 2017 NA en
## 5 Thu Jan 05 16:48:47 +0000 2017 NA en
## 6 Thu Jan 05 02:29:18 +0000 2017 NA en
This is also useful if e.g. you’re interested in compiling lists of journalists, because media outlets offer these lists in their profiles.
# Download list of users who retweeted a tweet (unfortunately, only up to 100)
rts <- getRetweets(id='942123433873281024', oauth=my_oauth)
## 74 API calls left
## 75 retweeters. Next cursor: 0
## 73 API calls left
# https://twitter.com/realDonaldTrump/status/942123433873281024
users <- getUsersBatch(ids=rts, oauth=my_oauth)
## 1--75 users left
# create table with frequency of word use
library(quanteda)
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, remove=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"),
remove_punct = TRUE)
# create wordcloud
par(mar=c(0,0,0,0))
textplot_wordcloud(dfm, rot.per=0, scale=c(3, .50), max.words=100)
## Warning: scalemax.wordsrot.per is deprecated; use min_size and
## max_sizemax_wordsrotation instead
# format Twitter dates to facilitate analysis
tweets <- parseTweets("../data/realDonaldTrump.json")
## 1000 tweets have been parsed.
tweets$date <- formatTwDate(tweets$created_at, format="date")
hist(tweets$date, breaks="month")
Now time for another challenge!