
RECSM Summer School:
Text Analysis

Pablo Barberá

School of International Relations
University of Southern California

pablobarbera.com

Networked Democracy Lab
www.netdem.org

Course website:

github.com/pablobarbera/big-data-upf



Text as data



Text as data



Text as data



Text as data



Overview of text as data methods

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Events
Quotes
Locations
Names
. . .

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Events
Quotes
Locations
Names
. . .

Cosine
similarity
Naive Bayes

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Events
Quotes
Locations
Names
. . .

Cosine
similarity
Naive Bayes

mixture
model?

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Events
Quotes
Locations
Names
. . .

Cosine
similarity
Naive Bayes

mixture
model?

(ML methods)

Fig. 1 in Grimmer and Stewart (2013)



Overview of text as data methods

Entity
Recognition

Events
Quotes
Locations
Names
. . .

Cosine
similarity
Naive Bayes

mixture
model?

(ML methods)

Models with covariates
(sLDA, STM)

Fig. 1 in Grimmer and Stewart (2013)



From words to numbers

1. Bag-of-words assumption

2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization

I Part-of-speech tagging
3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix
I W: matrix of N documents by M unique words

I Wim= number of times m-th words appears in i-th
document.

I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix
I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.

I Usually large matrix, but sparse (so it fits in memory)



From words to numbers

1. Bag-of-words assumption
2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix
I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)



From words to numbers
From words to numbers

1. Preprocess text:

lowercase, remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)

“@MEPcandidate thank you and congratulations, you’re the best
#EP2014”
“@MEPcandidate You’re an idiot, I would never vote for you”

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .

Document 2 1 0 0 1 0 0 . . .
. . .

Document n 0 1 1 0 0 0 . . .



From words to numbers
From words to numbers

1. Preprocess text: lowercase,

remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)

“@mepcandidate thank you and congratulations, you’re the best
#ep2014”
“mepcandidate you’re an idiot, i would never vote for you”

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .

Document 2 1 0 0 1 0 0 . . .
. . .

Document n 0 1 1 0 0 0 . . .



From words to numbers
From words to numbers

1. Preprocess text: lowercase, remove stopwords and
punctuation,

stem, tokenize into unigrams and bigrams
(bag-of-words assumption)

“@mepcandidate thank you and congratulations, you’re the best
#ep2014”
“@mepcandidate you’re an idiot, i would never vote for you”

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .

Document 2 1 0 0 1 0 0 . . .
. . .

Document n 0 1 1 0 0 0 . . .



From words to numbers
From words to numbers

1. Preprocess text: lowercase, remove stopwords and
punctuation, stem,

tokenize into unigrams and bigrams
(bag-of-words assumption)

“@ thank congratulations, you’re best #ep2014”
“@ you’re idiot never vote”

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .

Document 2 1 0 0 1 0 0 . . .
. . .

Document n 0 1 1 0 0 0 . . .



From words to numbers
From words to numbers

1. Preprocess text: lowercase, remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)
[@, thank, congratul, you’r, best, #ep2014, @ thank, thank congratul,
congratul you’r, you’r best, best, best #ep2014]
[@, you’r, idiot, never, vote, @ you’r, you’r idiot, idiot never, never vote]

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .
Document 2 1 0 0 1 0 0 . . .

. . .
Document n 0 1 1 0 0 0 . . .



From words to numbers
From words to numbers

1. Preprocess text: lowercase, remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)
[@, thank, congratul, you’r, best, #ep2014, @ thank, thank congratul,
congratul you’r, you’r best, best, best #ep2014]
[@, you’r, idiot, never, vote, @ you’r, you’r idiot, idiot never, never vote]

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.

@ th
an

k
co

ng
ra

tu
l

yo
u’

r

#e
p2

01
4

@
th

an
k

..
.

M
w

or
ds

Document 1 1 1 1 1 1 1 . . .
Document 2 1 0 0 1 0 0 . . .

. . .
Document n 0 1 1 0 0 0 . . .



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:

I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment

I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions

I Insight, causation, discrepancy, tentative... for cognitive
processes

I Sexism, homophobia, xenophobia, racism... for hate
speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes

I Sexism, homophobia, xenophobia, racism... for hate
speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech

many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document

I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)

I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words

I Code a few documents manually and see if dictionary
prediction aligns with human coding of document



Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:
I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...

What we need:

I Hand-coded dataset (labeled), to be split into:

I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:

I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier

I Validation/Test set: used to validate the classifier
I Method to extrapolate from hand coding to unlabeled

documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation

I Performance metric to choose best classifier and avoid
overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...
What we need:

I Hand-coded dataset (labeled), to be split into:
I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Performance metrics

Confusion matrix:

Source: Grimmer, 2014, “Text as Data” course week 14



Cross-validation

Intuition:
I Create K training and test sets (“folds”) within training set.
I For each k in K, run classifier and estimate performance in

test set within fold.
I Why? Find best classifier and avoid overfitting



Dictionaries vs supervised learning

Source: González-Bailón and Paltoglou (2015)



Regularized regression

Source: Grimmer, 2014, “Text as Data” course week 15



Regularized regression

Source: Grimmer, 2014, “Text as Data” course week 15



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale

I Data = document-term matrix WR for set of “reference”
texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:

I Prm = Frm∑
r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:

I Prm = Frm∑
r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:

I Prm = Frm∑
r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:

I Prm = Frm∑
r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:
I Prm = Frm∑

r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:
I Prm = Frm∑

r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:
I Prm = Frm∑

r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:
I Prm = Frm∑

r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:
I Svd =

∑
w (Fvm × Smd )→ (weighted average of scored

words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale
I Data = document-term matrix WR for set of “reference”

texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:
I Prm = Frm∑

r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:
I Svd =

∑
w (Fvm × Smd )→ (weighted average of scored

words)
I S∗

vd = (Svd − Svd )
(

SDrd
SDvd

)
+ Svd → Rescaled scores.


