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Text as data

Google Books Ngram Viewer

Graph these comma-separated phrases: ‘ Albert Einstein,Sherlock Holmes, Frankenstein ‘ case-insensitive
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Text as data
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From words to numbers

1. Bag-of-words assumption
2. Pre-processing text
» Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.
» Stemming / lemmatization
» Part-of-speech tagging
3. Document-term matrix
» W: matrix of N documents by M unique words

» Win= number of times m-th words appears in j-th
document.

» Usually large matrix, but sparse (so it fits in memory)
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From words to numbers

1. Preprocess text: lowercase, remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)

[@, thank, congratul, you'r, best, #ep2014, @ thank, thank congratul,

congratul you'r, you'r best, best, best #ep2014]

[@, you'r, idiot, never, vote, @ you'r, you’r idiot, idiot never, never vote]
2. Document-term matrix:

» W: matrix of N documents by M unique n-grams
» W;m= number of times m-th n-gram appears in i-th

document. _
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Dictionary methods

Classifying documents when categories are known using
dictionaries:
» Lists of words that correspond to each category:

» Positive or negative, for sentiment
» Sad, happy, angry, anxious... for emotions
» Insight, causation, discrepancy, tentative... for cognitive

processes

» Sexism, homophobia, xenophobia, racism... for hate
speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

» Count number of times they appear in each document
» Normalize by document length (optional)

» Validate, validate, validate.

» Check sensitivity of results to exclusion of specific words
» Code a few documents manually and see if dictionary
prediction aligns with human coding of document
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Supervised machine learning

Goal: classify documents into pre existing categories.

e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...

What we need:

» Hand-coded dataset (labeled), to be split into:

» Training set : used to train the classifier
» Validation/Test set: used to validate the classifier

» Method to extrapolate from hand coding to unlabeled
documents (classifier):

» SVM, Naive Bayes, regularized regression, BART,
ensemble methods...
» Approach to validate classifier: cross-validation

» Performance metric to choose best classifier and avoid
overfitting: confusion matrix, AUC, accuracy, precision,
recall...



Performance metrics

Confusion matrix:

Actual Label
Classification (algorithm) | Liberal Conservative
Liberal True Liberal False Liberal
Conservative False Conservative | True Conservative

TrueLib 4+ TrueCons

Accuracy =
uracy TrueLib + TrueCons + FalseLib + FalseCons
Brecicio True Liberal
recisiony; =
Liberal True Liberal + False Liberal
Recall True Liberal
ecally; = - i
Liberal True Liberal + False Conservative
2Precision| jperalRecallliperal
Fliberal =

Precision|jperal + Recalllperal

Source: Grimmer, 2014, “Text as Data” course week 14



Cross-validation

Intuition:
» Create K training and test sets (“folds”) within training set.
» For each k in K, run classifier and estimate performance in
test set within fold.
» Why? Find best classifier and avoid overfitting

[ rowz | [ vomz | [ vz | [ voma | [ rems |

Training Training Training Training
Training | "l'hd'} Training Training Training
Training Training - Training Training

Training Training Training Training
Training Training Training Training Test

Prediction Statistics

Complete
Data
LR




Dictionaries vs supervised learning

Lexicons’ Accuracy in Document Classification
Compared to Machine-Learning Approach

BBC Twitter Digg

%
20 40 60

LB SS AN LM LC ML AN M LC ML

YouTube Blogs

LB: LexiconBased
SS: SentiStrength

) AN: ANEW
) LM: LabMT
LC: Lexicoder
ML: machine-learning
algorithm
LB S AN ML

SS AN LM LC ML LB SS AN LM LC ML random benchmark

%
20 40 60

0

Source: Gonzalez-Bailén and Paltoglou (2015)



Regularized regression

Suppose we have N documents, with each document i having label
yi € {—1,1} ~~ {liberal, conservative}

We represent each document 7 is x; = (xj1, Xi2, - . ., XiJ)-
N 2
f(ﬁaxu Y) = (yi_ﬁxi)
i=1
~ N 2
B = arg ming {Z (y,- -0 x,-) }
i=1
7 -1 7
= (xx) X'y
Problem:

- J will likely be large (perhaps J > N)
- There many correlated variables

Source: Grimmer, 2014, “Text as Data” course week 15



Regularized regression

Penalty for model complexity

2
N J J
FB,X.Y) = > |vi— Bo+ > By | +AD_ 5
i=1 j=1 j=1
N —
Penalty

where:

- [3g ~ intercept

- A~ penalty parameter

Source: Grimmer, 2014, “Text as Data” course week 15
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Goal: estimate positions on a latent ideological scale

Data = document-term matrix Wg for set of “reference”
texts, each with known A4, a policy position on dimension
d.
Compute F, where F,p, is relative frequency of word m over
the total number of words in document r.
Scores for individual words:

> P = Zf e (Prob. we are reading r if we observe m)

» Wordscore Syg = >, (Prm % Ar)
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Goal: estimate positions on a latent ideological scale
Data = document-term matrix Wg for set of “reference”
texts, each with known A4, a policy position on dimension
d.
Compute F, where F,p, is relative frequency of word m over
the total number of words in document r.
Scores for individual words:

> P = Zf e (Prob. we are reading r if we observe m)
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Goal: estimate positions on a latent ideological scale
Data = document-term matrix Wg for set of “reference”
texts, each with known A4, a policy position on dimension
d.
Compute F, where F,p, is relative frequency of word m over
the total number of words in document r.
Scores for individual words:

> P = Zf e (Prob. we are reading r if we observe m)

» Wordscore Syg = >, (Prm % Ar)
Scores for “virgin” texts:

» Sws =, (Fum x Smg) — (Weighted average of scored
words)
SDrd

> Siy=(Sw — Sw) (sow) + S,4 — Rescaled scores.

v

v

v

v




