RECSM Summer School: Text Analysis

Pablo Barberá

School of International Relations University of Southern California pablobarbera.com

Networked Democracy Lab www.netdem.org

Course website: github.com/pablobarbera/big-data-upf

Google Books Ngram Viewer

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

1. Bag-of-words assumption

- 1. Bag-of-words assumption
- 2. Pre-processing text

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization
 - Part-of-speech tagging

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization
 - Part-of-speech tagging
- 3. Document-term matrix

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization
 - Part-of-speech tagging
- 3. Document-term matrix
 - ▶ **W**: matrix of *N* documents by *M* unique words

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization
 - Part-of-speech tagging
- 3. Document-term matrix
 - ▶ **W**: matrix of *N* documents by *M* unique words
 - W_{im}= number of times m-th words appears in i-th document.

- 1. Bag-of-words assumption
- 2. Pre-processing text
 - Capitalization, cleaning digits/URLs, removing stopwords and sparse words, etc.
 - Stemming / lemmatization
 - Part-of-speech tagging
- Document-term matrix
 - ▶ **W**: matrix of *N* documents by *M* unique words
 - W_{im}= number of times m-th words appears in i-th document.
 - Usually large matrix, but sparse (so it fits in memory)

From words to numbers

1. Preprocess text:

"@MEPcandidate thank you and congratulations, you're the best #EP2014"

"@MEPcandidate You're an idiot, I would never vote for you"

From words to numbers

1. Preprocess text: lowercase,

"@mepcandidate thank you and congratulations, you're the best #ep2014"

"mepcandidate you're an idiot, i would never vote for you"

From words to numbers

 Preprocess text: lowercase, remove stopwords and punctuation,

"@mepcandidate thank you and congratulations, you're the best #ep2014"

"@mepcandidate you're an idiot, i would never vote for you"

From words to numbers

 Preprocess text: lowercase, remove stopwords and punctuation, stem,

"@ thank congratulations, you're best #ep2014"

"@ you're idiot never vote"

- Preprocess text: lowercase, remove stopwords and punctuation, stem, tokenize into unigrams and bigrams (bag-of-words assumption)
 - [@, thank, congratul, you'r, best, #ep2014, @ thank, thank congratul, congratul you'r, you'r best, best, best #ep2014]
 - [@, you'r, idiot, never, vote, @ you'r, you'r idiot, idiot never, never vote]

- Preprocess text: lowercase, remove stopwords and punctuation, stem, tokenize into unigrams and bigrams (bag-of-words assumption)
 - [@, thank, congratul, you'r, best, #ep2014, @ thank, thank congratul, congratul you'r, you'r best, best, best #ep2014]
 - [@, you'r, idiot, never, vote, @ you'r, you'r idiot, idiot never, never vote]
- Document-term matrix:
 - ▶ **W**: matrix of *N* documents by *M* unique n-grams
 - ▶ w_{im}= number of times m-th n-gram appears in i-th document.

```
Document 1 1 1 1 1 1 ...

Document 2 1 0 0 1 0 0 ...

0 thank

Words

Words
```

Classifying documents when categories are known using dictionaries:

Lists of words that correspond to each category:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - ► Sad, happy, angry, anxious... for emotions

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech

Classifying documents when categories are known using dictionaries:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech

many others: see LIWC, VADER, SentiStrength, LexiCoder...

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)
- Validate, validate, validate.

Dictionary methods

Classifying documents when categories are known using dictionaries:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)
- Validate, validate, validate.
 - Check sensitivity of results to exclusion of specific words

Dictionary methods

Classifying documents when categories are known using dictionaries:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)
- Validate, validate, validate.
 - Check sensitivity of results to exclusion of specific words
 - Code a few documents manually and see if dictionary prediction aligns with human coding of document

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

What we need:

Hand-coded dataset (labeled), to be split into:

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set: used to train the classifier

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set: used to train the classifier
 - Validation/Test set: used to validate the classifier

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set : used to train the classifier
 - Validation/Test set: used to validate the classifier
- Method to extrapolate from hand coding to unlabeled documents (classifier):

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set : used to train the classifier
 - Validation/Test set: used to validate the classifier
- Method to extrapolate from hand coding to unlabeled documents (classifier):
 - ► SVM, Naive Bayes, regularized regression, BART, ensemble methods...

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set : used to train the classifier
 - Validation/Test set: used to validate the classifier
- Method to extrapolate from hand coding to unlabeled documents (classifier):
 - SVM, Naive Bayes, regularized regression, BART, ensemble methods...
- Approach to validate classifier: cross-validation

Goal: classify documents into pre existing categories. e.g. authors of documents, sentiment of tweets, ideological position of parties based on manifestos, tone of movie reviews...

- Hand-coded dataset (labeled), to be split into:
 - Training set : used to train the classifier
 - Validation/Test set: used to validate the classifier
- Method to extrapolate from hand coding to unlabeled documents (classifier):
 - SVM, Naive Bayes, regularized regression, BART, ensemble methods...
- Approach to validate classifier: cross-validation
- Performance metric to choose best classifier and avoid overfitting: confusion matrix, AUC, accuracy, precision, recall...

Performance metrics

Confusion matrix:

	Actual Label	
Classification (algorithm)	Liberal	Conservative
Liberal	True Liberal	False Liberal
Conservative	False Conservative	True Conservative

$$\begin{array}{lll} \mathsf{Accuracy} &=& \frac{\mathsf{TrueLib} + \mathsf{TrueCons}}{\mathsf{TrueLib} + \mathsf{TrueCons}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLib} + \mathsf{FalseLib} + \mathsf{FalseCons}}{\mathsf{TrueLiberal}} \\ \mathsf{Recall}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLiberal}}{\mathsf{TrueLiberal} + \mathsf{FalseLiberal}} \\ \mathsf{F}_{\mathsf{Liberal}} &=& \frac{2\mathsf{Precision}_{\mathsf{Liberal}} \mathsf{Recall}_{\mathsf{Liberal}}}{\mathsf{Precision}_{\mathsf{Liberal}} + \mathsf{Recall}_{\mathsf{Liberal}}} \\ \hline \end{array}$$

Source: Grimmer, 2014, "Text as Data" course week 14

Cross-validation

Intuition:

- Create K training and test sets ("folds") within training set.
- ► For each k in K, run classifier and estimate performance in test set within fold.
- Why? Find best classifier and avoid overfitting

Dictionaries vs supervised learning

Lexicons' Accuracy in Document Classification Compared to Machine-Learning Approach

Source: González-Bailón and Paltoglou (2015)

Regularized regression

Suppose we have N documents, with each document i having label $y_i \in \{-1,1\} \rightsquigarrow \{\text{liberal, conservative}\}$ We represent each document i is $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iJ})$.

$$f(\beta, \mathbf{X}, \mathbf{Y}) = \sum_{i=1}^{N} (y_i - \beta' \mathbf{x}_i)^2$$

$$\widehat{\beta} = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta' \mathbf{x}_i)^2 \right\}$$

$$= (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}$$

Problem:

- J will likely be large (perhaps J > N)
- There many correlated variables

Source: Grimmer, 2014, "Text as Data" course week 15

Regularized regression

Penalty for model complexity

$$f(\boldsymbol{\beta}, \boldsymbol{X}, \boldsymbol{Y}) = \sum_{i=1}^{N} \left(y_i - \beta_0 + \sum_{j=1}^{J} \beta_j x_{ij} \right)^2 + \underbrace{\lambda \sum_{j=1}^{J} \beta_j^2}_{\text{Penalty}}$$

where:

- $\beta_0 \rightsquigarrow \text{intercept}$
- $\lambda \leadsto$ penalty parameter

Source: Grimmer, 2014, "Text as Data" course week 15

Goal: estimate positions on a latent ideological scale

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)
 - Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)
 - Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$
- Scores for "virgin" texts:

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- ▶ Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)
 - Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$
- Scores for "virgin" texts:
 - ▶ $S_{vd} = \sum_{w} (F_{vm} \times S_{md}) \rightarrow \text{(weighted average of scored words)}$

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- ▶ Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)
 - Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$
- Scores for "virgin" texts:
 - ▶ $S_{vd} = \sum_{w} (F_{vm} \times S_{md}) \rightarrow \text{(weighted average of scored words)}$
 - $\blacktriangleright \ \ S^*_{\textit{vd}} = (S_{\textit{vd}} \overline{S_{\textit{vd}}}) \left(\frac{\textit{SD}_{\textit{rd}}}{\textit{SD}_{\textit{vd}}} \right) + \overline{S_{\textit{vd}}} \rightarrow \mathsf{Rescaled} \ \mathsf{scores}.$