
RECSM Summer School:
Text Analysis

Pablo Barberá
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From words to numbers

1. Bag-of-words assumption

2. Pre-processing text

I Capitalization, cleaning digits/URLs, removing stopwords
and sparse words, etc.

I Stemming / lemmatization
I Part-of-speech tagging

3. Document-term matrix

I W: matrix of N documents by M unique words
I Wim= number of times m-th words appears in i-th

document.
I Usually large matrix, but sparse (so it fits in memory)
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From words to numbers

1. Preprocess text:

lowercase, remove stopwords and
punctuation, stem, tokenize into unigrams and bigrams
(bag-of-words assumption)

“@MEPcandidate thank you and congratulations, you’re the best
#EP2014”
“@MEPcandidate You’re an idiot, I would never vote for you”

2. Document-term matrix:
I W: matrix of N documents by M unique n-grams
I wim= number of times m-th n-gram appears in i-th

document.
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Dictionary methods
Classifying documents when categories are known using
dictionaries:

I Lists of words that correspond to each category:

I Positive or negative, for sentiment
I Sad, happy, angry, anxious... for emotions
I Insight, causation, discrepancy, tentative... for cognitive

processes
I Sexism, homophobia, xenophobia, racism... for hate

speech
many others: see LIWC, VADER, SentiStrength,
LexiCoder...

I Count number of times they appear in each document
I Normalize by document length (optional)
I Validate, validate, validate.

I Check sensitivity of results to exclusion of specific words
I Code a few documents manually and see if dictionary

prediction aligns with human coding of document
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Supervised machine learning

Goal: classify documents into pre existing categories.
e.g. authors of documents, sentiment of tweets, ideological
position of parties based on manifestos, tone of movie
reviews...

What we need:

I Hand-coded dataset (labeled), to be split into:

I Training set : used to train the classifier
I Validation/Test set: used to validate the classifier

I Method to extrapolate from hand coding to unlabeled
documents (classifier):

I SVM, Naive Bayes, regularized regression, BART,
ensemble methods...

I Approach to validate classifier: cross-validation
I Performance metric to choose best classifier and avoid

overfitting: confusion matrix, AUC, accuracy, precision,
recall...
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Performance metrics

Confusion matrix:

Source: Grimmer, 2014, “Text as Data” course week 14



Cross-validation

Intuition:
I Create K training and test sets (“folds”) within training set.
I For each k in K, run classifier and estimate performance in

test set within fold.
I Why? Find best classifier and avoid overfitting



Dictionaries vs supervised learning

Source: González-Bailón and Paltoglou (2015)



Regularized regression

Source: Grimmer, 2014, “Text as Data” course week 15



Regularized regression

Source: Grimmer, 2014, “Text as Data” course week 15



Wordscores (Laver, Benoit, Garry, 2003, APSR)

I Goal: estimate positions on a latent ideological scale

I Data = document-term matrix WR for set of “reference”
texts, each with known Ard , a policy position on dimension
d .

I Compute F, where Frm is relative frequency of word m over
the total number of words in document r .

I Scores for individual words:

I Prm = Frm∑
r Frm
→ (Prob. we are reading r if we observe m)

I Wordscore Smd =
∑

r (Prm × Ard )

I Scores for “virgin” texts:

I Svd =
∑

w (Fvm × Smd )→ (weighted average of scored
words)

I S∗
vd = (Svd − Svd )

(
SDrd
SDvd

)
+ Svd → Rescaled scores.
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