It is possible to download recent tweets, but only up those less than 7 days old, and in some cases not all of them. We will use the netdemR
package for this (and the other functions that scrape Twitter’s REST API).
library(netdemR)
## Loading required package: ROAuth
## Loading required package: rjson
## Loading required package: jsonlite
##
## Attaching package: 'jsonlite'
## The following objects are masked from 'package:rjson':
##
## fromJSON, toJSON
## Loading required package: httr
## ##
## ## netdemR: tools for analysis of Twitter data
## ## Networked Democracy Lab at USC
## ## netdem.org
## ##
library(streamR)
## Loading required package: RCurl
## Loading required package: bitops
searchTweets(q=c("graham", "mccain"),
filename="senator-tweets.json",
n=1000, until="2017-06-25",
oauth_folder="credentials")
## 100 tweets. Max id: 878764666939486208
## 176 hits left
## 200 tweets. Max id: 878762868426014720
## 175 hits left
## 300 tweets. Max id: 878760976190853120
## 174 hits left
## 400 tweets. Max id: 878758939575418880
## 173 hits left
## 500 tweets. Max id: 878756808906682368
## 172 hits left
## 600 tweets. Max id: 878755032631570432
## 171 hits left
## 700 tweets. Max id: 878753089578205184
## 170 hits left
## 800 tweets. Max id: 878751611119706112
## 169 hits left
## 900 tweets. Max id: 878749885968920576
## 168 hits left
## 1000 tweets. Max id: 878748094564712448
tweets <- parseTweets("senator-tweets.json")
## 1000 tweets have been parsed.
What are the most popular hashtags?
library(stringr)
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #America #AmericaFirst #Liberal #Love #MAGA
## 4 4 4 4 4
## #People
## 4
You can check the documentation about the options for string search here.
This is how you would extract information from user profiles:
wh <- c("realDonaldTrump", "POTUS", "VP", "FLOTUS")
users <- getUsersBatch(screen_names=wh,
oauth_folder="credentials")
## 1--4 users left
str(users)
## 'data.frame': 4 obs. of 14 variables:
## $ id_str : chr "818910970567344128" "822215679726100480" "25073877" "818876014390603776"
## $ screen_name : chr "VP" "POTUS" "realDonaldTrump" "FLOTUS"
## $ name : chr "Vice President Pence" "President Trump" "Donald J. Trump" "Melania Trump"
## $ description : chr "Husband, father, and honored to serve as the 48th Vice President of the United States. Tweets may be archived: "| __truncated__ "45th President of the United States of America, @realDonaldTrump. Tweets archived: https://t.co/eVVzoBb3Zr" "45th President of the United States of America" "This account is run by the Office of First Lady Melania Trump. Tweets may be archived. More at https://t.co/eVVzoBb3Zr"
## $ followers_count : int 3792386 19035524 32903842 7510506
## $ statuses_count : int 1510 754 35162 87
## $ friends_count : int 6 41 45 4
## $ created_at : chr "Tue Jan 10 20:02:44 +0000 2017" "Thu Jan 19 22:54:28 +0000 2017" "Wed Mar 18 13:46:38 +0000 2009" "Tue Jan 10 17:43:50 +0000 2017"
## $ location : chr "Washington, D.C." "Washington, D.C." "Washington, DC" "Washington, D.C."
## $ lang : chr "en" "en" "en" "en"
## $ time_zone : chr "Eastern Time (US & Canada)" "Eastern Time (US & Canada)" "Eastern Time (US & Canada)" "Eastern Time (US & Canada)"
## $ status.id_str : chr "880399037228339200" "880256538056830976" "880242238000955392" "879506255852777472"
## $ status.created_at: chr "Thu Jun 29 12:14:22 +0000 2017" "Thu Jun 29 02:48:07 +0000 2017" "Thu Jun 29 01:51:18 +0000 2017" "Tue Jun 27 01:06:46 +0000 2017"
## $ status.text : chr "Was such a pleasure to meet Barbara & Teeba Marlowe in Cleveland. Inspiring to talk w/ them. See their stor"| __truncated__ "RT @GOPLeader: .@HouseGOP will send a strong signal tomorrow by passing #KatesLaw. Defiance of our laws will no"| __truncated__ "Tomorrow the House votes on #KatesLaw & No Sanctuary For Criminals Act. Lawmakers must vote to put American"| __truncated__ "Happy belated 3rd bday (yesterday) sweet Monty! Thank you for visiting us at @WhiteHouse today! https://t.co/ZnENYjB7zE"
Which of these has the most followers?
users[which.max(users$followers_count),]
## id_str screen_name name
## 3 25073877 realDonaldTrump Donald J. Trump
## description followers_count
## 3 45th President of the United States of America 32903842
## statuses_count friends_count created_at
## 3 35162 45 Wed Mar 18 13:46:38 +0000 2009
## location lang time_zone status.id_str
## 3 Washington, DC en Eastern Time (US & Canada) 880242238000955392
## status.created_at
## 3 Thu Jun 29 01:51:18 +0000 2017
## status.text
## 3 Tomorrow the House votes on #KatesLaw & No Sanctuary For Criminals Act. Lawmakers must vote to put American safety… https://t.co/p3vd8IXXaD
users$screen_name[which.max(users$followers_count)]
## [1] "realDonaldTrump"
Download up to 3,200 recent tweets from a Twitter account:
getTimeline(filename="realDonaldTrump.json", screen_name="realDonaldTrump",
n=1000, oauth_folder="credentials")
## 200 tweets. Max id: 869553853750013953
## 898 hits left
## 400 tweets. Max id: 855517053238870019
## 897 hits left
## 600 tweets. Max id: 839084268991229952
## 896 hits left
## 800 tweets. Max id: 825127844066054144
## 895 hits left
## 1000 tweets. Max id: 814114980983427073
What are the most common hashtags?
tweets <- parseTweets("realDonaldTrump.json")
## 1000 tweets have been parsed.
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #MAGA #AmericaFirst #ICYMI #Obamacare #FakeNews
## 13 9 9 6 5
## #USA
## 5
Download friends and followers:
followers <- getFollowers("RECSM_UPF",
oauth_folder="credentials")
## credentials/twitter-token.Rdata
## 15 API calls left
## 744 followers. Next cursor: 0
## 14 API calls left
What are the most common words that followers of the Center for Survey Methodology use to describe themselves on Twitter?
# extract profile descriptions
users <- getUsersBatch(ids=followers, oauth_folder="credentials")
## 1--744 users left
## 2--644 users left
## 3--544 users left
## 4--444 users left
## 5--344 users left
## 6--244 users left
## 7--144 users left
## 8--44 users left
# create table with frequency of word use
library(quanteda)
## quanteda version 0.9.9.65
## Using 3 of 4 cores for parallel computing
##
## Attaching package: 'quanteda'
## The following object is masked from 'package:utils':
##
## View
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, ignoredFeatures=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"))
## Warning in tokens.character(texts(x), ...): Argument ignoredFeatures not
## used.
## Warning in dfm.tokenizedTexts(temp, tolower = tolower, stem = stem, select
## = select, : Argument ignoredFeatures not used.
## Warning in dfm.dfm(result, tolower = FALSE, stem = stem, select = select, :
## Argument ignoredFeatures not used.
wf <- tfidf(dfm)
# create wordcloud
par(mar=c(0,0,0,0))
plot(wf, rot.per=0, scale=c(3, .50), max.words=100)
## Warning: 'plot.dfm' is deprecated.
## Use 'textplot_wordcloud' instead.
## See help("Deprecated")
Other functions that could be of use at some point:
# Finding users related to keywords
users <- searchUsers(q="pompeu fabra", count=100, oauth_folder="credentials")
## credentials/twitter-token.Rdata
# Downloading tweets when you know the ID
getStatuses(ids=c("474134260149157888", "266038556504494082"), filename="old-tweets.json",
oauth_folder="credentials")
## credentials/twitter-token.Rdata
## 900 API calls left
## 899 API calls left
parseTweets("old-tweets.json")
## 2 tweets have been parsed.
## text
## 1 Are you allowed to impeach a president for gross incompetence?
## 2 The electoral college is a disaster for a democracy.
## retweet_count favorited truncated id_str
## 1 0 FALSE FALSE 474134260149157888
## 2 0 FALSE FALSE 266038556504494082
## in_reply_to_screen_name
## 1 NA
## 2 NA
## source
## 1 <a href="http://twitter.com/download/android" rel="nofollow">Twitter for Android</a>
## 2 <a href="http://twitter.com" rel="nofollow">Twitter Web Client</a>
## retweeted created_at in_reply_to_status_id_str
## 1 FALSE Wed Jun 04 10:23:11 +0000 2014 NA
## 2 FALSE Wed Nov 07 04:45:09 +0000 2012 NA
## in_reply_to_user_id_str lang listed_count verified location
## 1 NA en 71952 TRUE Washington, DC
## 2 NA en 71952 TRUE Washington, DC
## user_id_str description geo_enabled
## 1 25073877 45th President of the United States of America TRUE
## 2 25073877 45th President of the United States of America TRUE
## user_created_at statuses_count followers_count
## 1 Wed Mar 18 13:46:38 +0000 2009 35162 32903864
## 2 Wed Mar 18 13:46:38 +0000 2009 35162 32903864
## favourites_count protected user_url name
## 1 24 FALSE NA Donald J. Trump
## 2 24 FALSE NA Donald J. Trump
## time_zone user_lang utc_offset friends_count
## 1 Eastern Time (US & Canada) en -14400 45
## 2 Eastern Time (US & Canada) en -14400 45
## screen_name country_code country place_type full_name place_name
## 1 realDonaldTrump NA NA NA NA NA
## 2 realDonaldTrump NA NA NA NA NA
## place_id place_lat place_lon lat lon expanded_url url
## 1 NA NaN NaN NA NA NA NA
## 2 NA NaN NaN NA NA NA NA
# download user information from a list
MCs <- getList(list_name="new-members-of-congress",
screen_name="cspan", oauth_folder="credentials")
## credentials/twitter-token.Rdata
## 900 API calls left
## 20 users in list. Next cursor: 5427671057913225216
## 899 API calls left
## 40 users in list. Next cursor: 4611686021468931847
## 898 API calls left
## 57 users in list. Next cursor: 0
## 897 API calls left
head(MCs)
## id id_str name screen_name
## 1 8.272798e+17 827279765287559171 Rep. Mike Johnson RepMikeJohnson
## 2 8.171385e+17 817138492614524928 Ted Budd RepTedBudd
## 3 8.170763e+17 817076257770835968 Adriano Espaillat RepEspaillat
## 4 8.170502e+17 817050219007328258 Rep. Blunt Rochester RepBRochester
## 5 8.168339e+17 816833925456789505 Nanette D. Barragán RepBarragan
## 6 8.167198e+17 816719802328715264 Rep. Liz Cheney RepLizCheney
## location
## 1 Washington, DC
## 2 Davie County, North Carolina
## 3 https://www.facebook.com/Congr
## 4 Delaware, USA - Washington, DC
## 5 San Pedro, CA
## 6 Wyoming, USA
## description
## 1 Proudly serving Louisiana's 4th Congressional District. Member on @HouseJudiciary & @NatResources.
## 2 Proudly serving the 13th district of North Carolina. #NC13
## 3 U. S. Representative proudly serving New York’s 13th Congressional District. Follow my work in Washington and #NY13
## 4 Official Twitter page for U.S. Representative Lisa Blunt Rochester (D-DE). Tweets from Rep. Blunt Rochester signed -LBR.
## 5 Official account. Honored to represent California's 44th Congressional District #CA44. Member of the @HispanicCaucus @USProgressives @Dodgers fan.
## 6 Official Page of Congressman Liz Cheney, proudly representing the people of Wyoming.
## url followers_count friends_count
## 1 https://t.co/qLAyhrFbRl 1380 361
## 2 https://t.co/VTsvWe0pia 1675 117
## 3 https://t.co/lcRqmQFAbz 5319 1010
## 4 https://t.co/Fe3XCG51wO 2271 259
## 5 https://t.co/Mt3nPi7hSH 4500 406
## 6 https://t.co/lBZ7grDQC9 1653 65
## created_at time_zone lang
## 1 Thu Feb 02 22:17:20 +0000 2017 Eastern Time (US & Canada) en
## 2 Thu Jan 05 22:39:33 +0000 2017 Pacific Time (US & Canada) en
## 3 Thu Jan 05 18:32:15 +0000 2017 <NA> en
## 4 Thu Jan 05 16:48:47 +0000 2017 <NA> en
## 5 Thu Jan 05 02:29:18 +0000 2017 <NA> en
## 6 Wed Jan 04 18:55:49 +0000 2017 Mountain Time (US & Canada) en
# format Twitter dates to facilitate analysis
tweets <- parseTweets("realDonaldTrump.json")
## 1000 tweets have been parsed.
tweets$date <- formatTwDate(tweets$created_at, format="date")
hist(tweets$date, breaks="month")
# Download list of users who retweeted a tweet (unfortunately, only up to 100)
rts <- getRetweets(id='474134260149157888', oauth_folder="credentials")
## credentials/twitter-token.Rdata
## 75 API calls left
## 91 retweeters. Next cursor: 0
## 74 API calls left
users <- getUsersBatch(ids=rts, oauth_folder="credentials")
## 1--91 users left
# create table with frequency of word use
library(quanteda)
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, ignoredFeatures=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"))
## Warning in tokens.character(texts(x), ...): Argument ignoredFeatures not
## used.
## Warning in dfm.tokenizedTexts(temp, tolower = tolower, stem = stem, select
## = select, : Argument ignoredFeatures not used.
## Warning in dfm.dfm(result, tolower = FALSE, stem = stem, select = select, :
## Argument ignoredFeatures not used.
wf <- tfidf(dfm)
# create wordcloud
par(mar=c(0,0,0,0))
plot(wf, rot.per=0, scale=c(3, .50), max.words=100)
## Warning: 'plot.dfm' is deprecated.
## Use 'textplot_wordcloud' instead.
## See help("Deprecated")