POIR 613: Computational Social Science

Pablo Barbera
University of Southern California

pablobarbera.com

Course website:

pablobarbera.com/POIR613/



Good (enough) practices in
scientific computing

Based on Nagler (1995) “Coding Style and Good Computing
Practices” (PS) and Wilson et al (2017) “Good Enough
Practices in Scientific Computing” (PLOS Comput Biol)



Good practices in scientific computing

Why should | waste my time?
» Replication is a key part of science:

» Keep good records of what you did so that others can
understand it

> “Yourself from 3 months ago doesn’t answer emails”

» More efficient research: avoid retracing own steps
» Your future self will be grateful

General principles:
1. Good documentation: README and comments
2. Modularity with structure
3. Parsimony (without being too smart)
4. Track changes



Summary of good practices

I e o

Safe and efficient data management
Well-documented code

Organized collaboration

One project = one folder

Track changes

Manuscripts as part of the analysis



1. Data management

vvvyYyy

Save raw data as originally generated
Create the data you wish to see in the world:

» Open, non-proprietary formats: e.g. .csv

» Informative variable names that indicate direction:
is_political instead of topic or v322; votedvs
turnout

» Recode missing values to NA

> File names that contain metadata: e.g. 05-alaska.csv
instead of state5.csv

Record all steps used to process data and store
intermediate data files if computationally intensive (easier
to rerun parts of a data analysis pipeline)

Separate data manipulation from data analysis

Prepare README with codebook of all variables

Periodic backups (or Dropbox, Google Drive, etc.)

Sanity checks: summary statistics after data manipulation



2.Well-documented code

» Number scripts based on execution order:

— €.0. 0l-clean-data.r, 02-recode-variables.r,
03-run-regression.r, 04-produce-figures.R...

» Write an explanatory note at the start of each script:

— Author, date of last update, purpose, inputs and outputs,
other relevant notes

» Rules of thumb for modular code:

1. Any task you run more than once should be a function (with
a meaningful name!)

2. Functions should not be more than 20 lines long

3. Separate functions from execution (e.g. in functions.r
file and then use source (functions.r) toload
functions to current environment

4. Errors should be corrected when/where they occur

> Keep it simple and don’t get too clever
» Add informative comments before blocks of code



3. Organized collaboration

» Create a README file with an overview of the project: title,
brief description, contact information, structure of folder

» Shared to-do list with tasks and deadlines

» Choose one person as corresponding author / point of
contact / note taker

» Split code into multiple scripts to avoid simultaneous edits

» Sharelatex, Overleaf, Google Docs to collaborate in
writing of manuscript



4. One project = one folder

Logical and consistent folder structure:

>

vVvYVvyVvVvyVvyy

code or src for all scripts

data for raw data

temp for temporary data files

output or results for final data files and tables
figures or plots for figures produced by scripts
manuscript for text of paper

docs for any additional documentation



5 &6.

Track changes; producing manuscript

Ideally: use version control (e.g. GitHub)

Manual approach: keep dates versions of code &
manuscript, and a CHANGELOG file with list of changes
Dropbox also has some basic version control built-in
Avoid typos and copy&paste errors: tables and figures are
produced in scripts and compiled directly into manuscript
with IATEX



Examples

Replication materials for some of my published articles:
» 2019 APSR
> 2017 1SQ

John Myles White’s ProjectTemplate R package.

Replication materials for Leeper 2017:
» Code and data


https://github.com/SMAPPNYU/lead_follow_apsr
https://github.com/pablobarbera/world-leaders-isq
http://projecttemplate.net/
http://hdl.handle.net/1902.1/17865

