POIR 613: Computational Social Science

Pablo Barberá
School of International Relations
University of Southern California
pablobarbera.com

Course website:
pablobarbera.com/POIR613/
1. Project
 ▶ Next milestone: 5-page summary that includes some data analysis by November 4th
2. Word embeddings
 ▶ Overview
 ▶ Applications
 ▶ Bias
 ▶ Demo
3. Event detection; ideological scaling
4. Solutions to challenge 7
5. Additional methods to compare documents
Overview of text as data methods

Acquire Documents → Preprocess → Research Objective

Classification

Known Categories
- Dictionary Methods
 - Individual Classification
 - Individual Methods
 - Measuring Proportions (ReadMe)
- Supervised Methods

Unknown Categories
- Fully Automated Clustering
 - Single Membership Models
 - Document Level (LDA)
 - Mixed Membership Models
 - Date Level (Dynamic Multitopic Model)
- Computer Assisted Clustering
 - Author Level (Expressed Agenda Model)

Ideological Scaling
- Supervised (wordscores)
- Unsupervised (wordfish)
Word embeddings
Beyond bag-of-words

Most applications of text analysis rely on a bag-of-words representation of documents

- Only relevant feature: frequency of features
- Ignores context, grammar, word order...
- Wrong but often irrelevant

One alternative: word embeddings

- Represent words as real-valued vector in a multidimensional space (often 100–500 dimensions), common to all words
- Distance in space captures syntactic and semantic regularities, i.e. words that are close in space have similar meaning
 - How? Vectors are learned based on context similarity
 - Distributional hypothesis: words that appear in the same context share semantic meaning
- Operations with vectors are also meaningful
Word embeddings example

<table>
<thead>
<tr>
<th>word</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>...</th>
<th>D_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>0.46</td>
<td>0.67</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>woman</td>
<td>0.46</td>
<td>-0.89</td>
<td>-0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>king</td>
<td>0.79</td>
<td>0.96</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>queen</td>
<td>0.80</td>
<td>-0.58</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
word2vec (Mikolov 2013)

▶ Statistical method to efficiently learn word embeddings from a corpus, developed by Google engineer
▶ Most popular, in part because pre-trained vectors are available
▶ Two models to learn word embeddings:
Word embeddings

- Overview
- Applications
- Bias
- Demo
The Geometry of Culture: Analyzing the Meanings of Class through Word Embeddings

Austin C. Kozlowski, Matt Taddy, and James A. Evans

Abstract

We argue word embedding models are a useful tool for the study of culture using a historical analysis of shared understandings of social class as an empirical case. Word embeddings represent semantic relations between words as relationships between vectors in a high-dimensional space, specifying a relational model of meaning consistent with contemporary theories of culture. Dimensions induced by word differences (rich – poor) in these spaces correspond to dimensions of cultural meaning, and the projection of words onto these dimensions reflects widely shared associations, which we validate with surveys. Analyzing text from millions of books published over 100 years, we show that the markers of class continuously shifted amidst the economic transformations of the twentieth century, yet the basic cultural dimensions of class remained remarkably stable. The notable exception is education, which became tightly linked to affluence independent of its association with cultivated taste.

Keywords

word embeddings, word2vec, culture, computational sociology, methodology, text analysis, content analysis

Source: Kozlowski et al, ASR 2019
Figure 10. Words That Project High and Low on the Employment Dimension of Word Embedding Models Trained on Texts Published at the Beginning and End of the Twentieth Century; 1900–1919 and 1980–1999 Google Ngrams Corpus
Cooperation in the international system

Figure 4: Distances by core countries. Plot of Euclidian distances between US and Russia (gray), and US and China (maroon).

Source: Pomeroy et al 2018
Semantic shifts

Using word embeddings to visualize changes in word meaning:

Source: Hamilton et al, 2016 ACL.
https://nlp.stanford.edu/projects/histwords/
Application: semantic shifts

Using word embeddings to visualize changes in word meaning:

Source: Hamilton et al, 2016 ACL.
https://nlp.stanford.edu/projects/histwords/
Dictionary expansion

Using word embeddings to expand **dictionaries** (e.g. incivility)

```r
> distance(file_name = "FBvec.bin", 
  + search_word = "libtard", 
  + num = 10)
Entered word or sentence: libtard

Word: libtard  Position in vocabulary: 5753
   word     dist
1   lib 0.798957586288452
2 lefty 0.771853387355804
3 libturd 0.762575328350067
4 teabagger 0.744283258914948
5 teabilly 0.715277075767517
6 liberal 0.709996342658997
7 retard 0.69070750474929
8 dumbass 0.690422177314758
9 rwnj 0.684058785438538
10 republitard 0.678197801113129

> distance(file_name = "FBvec.bin", 
  + search_word = "idiot", 
  + num = 10)
Entered word or sentence: idiot

Word: idiot  Position in vocabulary: 646
   word     dist
1    imbecile 0.867565214633942
2    asshole 0.848560094833374
3    moron 0.781079053878784
4    asshat 0.772150039672852
5    a-hole 0.765781462192535
6    ahole 0.760824918746948
7    asswipe 0.742586553096771
8    ignoramus 0.735219776630402
9    arsehole 0.732272684574127
10   idiot 0.720151424407959
```

Source: Timm and Barberá, 2019
Word embeddings

- Overview
- Applications
- Bias
- Demo
Bias in word embeddings

Semantic relationships in embeddings space capture stereotypes:

▶ Neutral example: man – woman ≈ king – queen
▶ Biased example: man – woman ≈ computer programmer – homemaker

Gender stereotype *she-he* analogies.

- sewing-carpentry
- nurse-surgeon
- blond-burly
- giggle-chuckle
- sassy-snappy
- volleyball-football
- register-nurse-physician
- interior designer-architect
- feminism-conservatism
- vocalist-guitarist
- diva-superstar
- cupcakes-pizzas
- housewife-shopkeeper
- softball-baseball
- cosmetics-pharmaceuticals
- petite-lanky
- charming-affable
- hairdresser-barber

Gender appropriate *she-he* analogies.

- queen-king
- waitress-waiter
- sister-brother
- ovarian cancer-prostate cancer
- mother-father
- convent-monastery

See also Garg et al, 2018 PNAS and Caliskan et al, 2017 Science.
Word embeddings
▶ Overview
▶ Applications
▶ Bias
▶ Demo
Event detection in textual datasets
Event detection (Beieler et al, 2016)

Goal: identify who did what to whom based on newspaper or historical records.

Methods:

▶ Manual annotation: higher accuracy, but more labor and time intensive
▶ Machine-based methods: 70-80% accuracy, but scalable and zero marginal costs
 ▶ Actor and verb dictionaries; e.g. TABARI and CAMEO.
 ▶ Named entity recognition, e.g Stanford’s NER

Issues:

▶ False positives, duplication, geolocation
▶ Focus on nation-states
▶ Reporting biases: focus on wealthy areas, media fatigue, negativity bias
▶ Mostly English-language methods
Ideological scaling using text as data
Goal: estimate positions on a latent ideological scale

Data = document-term matrix W_R for set of “reference” texts, each with known A_{rd}, a policy position on dimension d.

Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.

Scores for individual words:

- $P_{rm} = \frac{F_{rm}}{\sum_r F_{rm}} \rightarrow ($Prob. we are reading r if we observe m)
- Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$

Scores for “virgin” texts:

- $S_{vd} = \sum_w (F_{vm} \times S_{md}) \rightarrow ($weighted average of scored words$)$
- $S^*_{vd} = (S_{vd} - \bar{S}_{vd}) \left(\frac{SD_{rd}}{SD_{vd}} \right) + \bar{S}_{vd} \rightarrow $ Rescaled scores.
Goal: unsupervised scaling of ideological positions

Ideology of politician \(i \), \(\theta_i \) is a position in a latent scale.

Word usage is drawn from a Poisson-IRT model:

\[
W_{im} \sim \text{Poisson}(\lambda_{im})
\]

\[
\lambda_{im} = \exp(\alpha_i + \psi_m + \beta_m \times \theta_i)
\]

where:
- \(\alpha_i \) is “loquaciousness” of politician \(i \)
- \(\psi_m \) is frequency of word \(m \)
- \(\beta_m \) is discrimination parameter of word \(m \)

Estimation using EM algorithm.

Identification:
- Unit variance restriction for \(\theta_i \)
- Choose \(a \) and \(b \) such that \(\theta_a > \theta_b \)