
POIR 613: Computational Social Science

Pablo Barberá

University of Southern California
pablobarbera.com

Course website:

pablobarbera.com/POIR613/

APIs

APIs

API = Application Programming Interface; a set of structured
http requests that return data in a lightweight format.

HTTP = Hypertext Transfer Protocol; how browsers and e-mail
clients communicate with servers.

Source: Munzert et al, 2014, Figure 9.8

APIs

Types of APIs:
1. RESTful APIs: queries for static information at current

moment (e.g. user profiles, posts, etc.)
2. Streaming APIs: changes in users’ data in real time (e.g.

new tweets, weather alerts...)

APIs generally have extensive documentation:
I Written for developers, so must be understandable for

humans
I What to look for: endpoints and parameters.

Most APIs are rate-limited:
I Restrictions on number of API calls by user/IP address and

period of time.
I Commercial APIs may impose a monthly fee

Connecting with an API

Constructing a REST API call:

I Baseline URL endpoint:
https://maps.googleapis.com/maps/api/geocode/json

I Parameters: ?address=budapest
I Authentication token (optional): &key=XXXXX

From R, use httr package to make GET request:

library(httr)
r <- GET(
"https://maps.googleapis.com/maps/api/geocode/json",
query=list(address="budapest"))

If request was successful, returned code will be 200, where
4xx indicates client errors and 5xx indicates server errors.
If you need to attach data, use POST request.

{
"results" : [

{
"address_components" : [

{
"long_name" : "Budapest",
"short_name" : "Budapest",
"types" : ["locality", "political"]

},
{

"long_name" : "Hungary",
"short_name" : "HU",
"types" : ["country", "political"]

}
],
"formatted_address" : "Budapest, Hungary",
"geometry" : {

"bounds" : {
"northeast" : {

"lat" : 47.6130119,
"lng" : 19.3345049

},
"southwest" : {

"lat" : 47.349415,
"lng" : 18.9261011

}
},
"location" : {

"lat" : 47.497912,
"lng" : 19.040235

},
...
}

{
...

"location_type" : "APPROXIMATE",
"viewport" : {

"northeast" : {
"lat" : 47.6130119,
"lng" : 19.3345049

},
"southwest" : {

"lat" : 47.349415,
"lng" : 18.9261011

}
}

},
"place_id" : "ChIJyc_U0TTDQUcRYBEeDCnEAAQ",
"types" : ["locality", "political"]

}
],
"status" : "OK"

}

JSON

Response is often in JSON format (Javascript Object Notation).
I Type: content(r, "text")

I Data stored in key-value pairs. Why? Lightweight, more
flexible than traditional table format.

I Curly brackets embrace objets; square brackets enclose
arrays (vectors)

I Use fromJSON function in jsonlite the package or
stream in in ndjson the package to read JSON data

I But many packages have their own specific functions to
read data in JSON format; content(r, "parsed")

https://maps.googleapis.com/maps/api/geocode/json?address=budapest

Authentication

I Many APIs require an access key or token
I An alternative, open standard is called OAuth
I Connections without sharing username or password, only

temporary tokens that can be refreshed
I httr package in R implements most cases (examples)

https://github.com/hadley/httr/tree/master/demo

R packages

Before starting a new project, worth checking if there’s already
an R package for that API. Where to look?
I CRAN Web Technologies Task View (but only packages

released in CRAN)
I GitHub (including unreleased packages and most recent

versions of packages)
I rOpenSci Consortium

Also see this great list of APIs in case you need inspiration.

https://cran.r-project.org/web/views/WebTechnologies.html
https://ropensci.org/
https://github.com/toddmotto/public-apis

Why APIs?

Advantages:
I ‘Pure’ data collection: avoid malformed HTML, no legal

issues, clear data structures, more trust in data collection...
I Standardized data access procedures: transparency,

replicability
I Robustness: benefits from ‘wisdom of the crowds’

Disadvantages
I They’re not too common (yet!)
I Dependency on API providers
I Lack of natural connection to R

