
POIR 613: Computational Social Science

Pablo Barberá

University of Southern California
pablobarbera.com

Course website:

pablobarbera.com/POIR613/



Outline

What we will discuss here:
I Efficient data analysis with R
I Guided coding session:

I Loops and functions in R
I Algorithm complexity
I Examples of good coding practices in R



Efficient data analysis with R





Myths about R as programming language

1. R is an interpreted language, so it must be slow
I Interpreted = executes code directly without compiling
I Compiled code = code executed natively on CPU (fast!)
I BUT: many functions are written in C and C++ and thus run

in fast machine code
I Slow code can be written more efficiently

2. All objects in R are stored in memory
I You cannot open datasets larger than RAM
I BUT: most laptops now have 8+ GB of RAM (+virtual mem)
I bigmemory package: work with files on disk
I Easy to work with large databases in the cloud

3. R only uses one core of your CPU
I Unlike STATA, no multi-core computing out of the box
I BUT: many functions and packages now take advantage of

multi-core computers
I Easy to write your own code to do parallel computing

https://cran.r-project.org/web/packages/bigmemory/index.html


My data is too big! My code is too slow!

What to do?
1. Buy a better computer or expand RAM memory
2. Write more efficient code
3. Use parallel computing – more on that later this semester
4. Move your code/data to the cloud
5. Use out-of-memory storage: SQL databases, bigmemory

package, Hadoop...



Detour: algorithm complexity

I You can define the efficiency (aka complexity) of code
(algorithm) in two different ways:

1. Time: how long it takes to run
2. Space: how much memory it uses

I These can be defined in terms proportional to the size of
your data – “Big O” notation; e.g. O(n), O(log n), O(n2)

I Time and space complexity can be quite different! (more
on this later)



Writing efficient R code (Part I)

I Conventional wisdom: avoid for loops at all costs!
I But simply rewriting loops will not make code faster
I Key: use vectorized functions instead of loops
I Why are vectorized function fast? They use vector filtering,

which means loop is done in machine native code
I Takes vector as input and return vector as output
I Some vectorized functions: ifelse(), which(),

rowSums(), colSums(), sum(), any(), rnorm()...



Writing efficient R code (Part II)

I A common bottleneck is memory re-allocation, e.g.:
result <- c()
for (i in 1:n){

result[i] <- x[i] + y[i]
}

I In iteration, R re-sizes the vector and re-allocates memory
I For large operations (e.g. data frames), this can make your

code really slow
I Solution: pre-allocate vector size:

result <- rep(NA, n)
for (i in 1:n){

result[i] <- x[i] + y[i]
}


