POIR 613: Measurement Models and Statistical Computing

Pablo Barberá

School of International Relations University of Southern California pablobarbera.com

Course website: pablobarbera.com/POIR613/

Today

- Solutions for last week's challenge
- 2. Reminder: peer feedback was due yesterday
 - Please submit via Blackboard as well
- 3. Next deadline: October 30 for descriptive statistics
- 4. Other announcements:
 - No class on November 21st
 - Office hours at regular time tomorrow
- Advanced topics in text analysis:
 - Event detection
 - Ideological scaling
 - Word embeddings

Overview of text as data methods

Fig. 1 in Grimmer and Stewart (2013)

Event detection in textual

datasets

Event detection (Beieler et al, 2016)

Goal: identify who did what to whom based on newspaper or historical records.

Methods:

- Manual annotation: higher accuracy, but more labor and time intensive
- Machine-based methods: 70-80% accuracy, but scalable and zero marginal costs
 - Actor and verb dictionaries; e.g. TABARI and CAMEO.
 - Named entity recognition, e.g Stanford's NER

Issues:

- False positives, duplication, geolocation
- Focus on nation-states
- Reporting biases: focus on wealthy areas, media fatigue, negativity bias
- Mostly English-language methods

Ideological scaling using text as

data

Wordscores (Laver, Benoit, Garry, 2003, APSR)

- Goal: estimate positions on a latent ideological scale
- Data = document-term matrix W_R for set of "reference" texts, each with known A_{rd}, a policy position on dimension d.
- ▶ Compute F, where F_{rm} is relative frequency of word m over the total number of words in document r.
- Scores for individual words:
 - ▶ $P_{rm} = \frac{F_{rm}}{\sum_{r} F_{rm}}$ → (Prob. we are reading r if we observe m)
 - Wordscore $S_{md} = \sum_r (P_{rm} \times A_{rd})$
- Scores for "virgin" texts:
 - ▶ $S_{vd} = \sum_{w} (F_{vm} \times S_{md}) \rightarrow \text{(weighted average of scored words)}$
 - $lacksquare S^*_{vd} = (S_{vd} \overline{S_{vd}}) \left(rac{\mathit{SD}_{rd}}{\mathit{SD}_{vd}}
 ight) + \overline{S_{vd}}
 ightarrow \mathsf{Rescaled} \; \mathsf{scores}.$

Wordfish (Slapin and Proksch, 2008, AJPS)

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m β_m is discrimination parameter of word m

- Estimation using EM algorithm.
- Identification:
 - ▶ Unit variance restriction for θ_i
 - ▶ Choose *a* and *b* such that $\theta_a > \theta_b$

Word embeddings

[LINK]