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Solutions for last week’s challenge
Discussion: survey research in the digital age
Multilevel regression

Multilevel regression and post-stratification
MRP with R



Multilevel regression and
post-stratification



Credit where it's due

References for the materials in these slides:

» Course materials for “Applied Multilevel Regression” by
Zoltan Fazekas

» Gelman and Hill, 2007, “Data Analysis Using Regression
and Multilevel/Hierarchical Models”, Cambridge University
Press

» Kastellec et al, 2016, “Estimating State Public Opinion
With Multi-Level Regression and Poststratification using R”



How many survey respondents would you need
to identify with 0.05 significance and 80% power
a difference of 4 percentage points in vote
share?



> power.prop.test (pl=0.48, p2=0.52, power=0.80,
sig.level=0.05)

Two-sample comparison of proportions power
calculation

n = 2451.596

pl = 0.48
p2 = 0.52
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number in xeachx* group



Small-area estimation

Common issue in survey research: interest in estimates of
public opinion for subnational units, but small sample size
means high margins of error.
Solutions?
1. Aggregate multiple small-sample polls and compute
weighted average to reduce noise
» Fivethirtyeight model

» Add prior information and model correlations across states
(assuming common shifts in vote shares)

2. Multilevel-regression with post-stratification (MRP):
» Model relationship between demographic/political variables
and outcomes of interest
» Compute cell-level estimates of outcome variable
» Use population weights to aggregate cell-level estimates



MRP works
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YouGov

YouGov’s 2017 UK election predictions, by Ben Lauderdale,
Doug Rivers, and Jack Blumenau


https://yougov.co.uk/news/2017/05/31/yougov-election-model-q/
https://yougov.co.uk/news/2017/05/31/yougov-election-model-q/

Multilevel regression
models



Motivation

10.0- .

oo
°

7.5-

0000
000000

o
Yo
8606606000500

o

0660060000
600060000

oo

o

8588

g
@
g
oegacoo0

90 G0 o oo

> 5.0- o og e

8
88686868
o
6
a
8
o

goBgooc

88
29§909899998°00790

o
oo

259595 s 050520

o
o
o

0oma
868
S
o
3

215
2238
86

i

980go0g

8089725899995
]

o

1

Lo
'

s

3

yeenegcoglogogen
8

oo
8

e

eo0n
5
gog

88

25-

1
1

2goan

20 &

9018809000g008600
8

0g

808

00 0 CWoEE 0 ®
o0ogog

°
1]
3
0 caomom o a@eDDs

0.0- ° o @0 oo @0 g 0o 08 GO

8
e
9
°
°
°
°



Motivation
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Quick summary

» Multilevel (hierarchical) modeling is a generalization of
linear and generalized linear modeling in which data is
structured in groups and regression coefficients
themselves can vary by group, as a function of parameters
also estimated from data (Gelman and Hill 2007).

» ...researchers should be aware that multilevel models are
data intensive & [...] we should be equally aware that
multilevel models are theory intensive (Steenbergen and
Jones 2002, p.234).

» This does not only mean estimation complexity, it also
means complexity in interpretation: how to get quantities of
interest, how these should be interpreted, which element of
the model tells the real story, etc.



Basics of multilevel modeling

» Applicable when our data has a hierarchical structure,
where level-1 observations are nested within level-2
» For example:
» L1 individuals - L2 countries, districts, regions, etc. - very
common in comparative political science
» L1 measurement - L2 individuals - panel setting
» Or just TSCS models, for example
» Customarily, nis the sample size/number of observations
for L1, and J is the the sample size/number of
observations for L2

» Do we have n independent observations in reality,
assuming that the data is indeed clustered (or
observations are nested within L2)?



Notation

Standard OLS regression:

Yi = XiB + ¢; fori=1,....n
OR
yi ~ N(X;3,02) fori=1,...,n

» y is a vector of length n; we use ; to denote the i row
(observation, i.e., individual)

» k predictors, including constant (we will also denote this «,
or in other notational convention fy)

» X is an n x k matrix of predictors, where X/ = 1

» ¢, errors assumed to stem from N(0, 02) — normal
distribution with a mean of 0 and standard deviation o



Generalizing OLS

Varyingintercepts é ‘,_:-‘ rying

varying-intercept model:

Yi=aj +XiB +e¢i
varying-slope model:
Yi=a+ XBjj +ei
varying-intercept, varying-slope model:

Vi = oy + XBjy + i



Costs and benefits of multilevel modeling

Motivations:

» Accounting for individual- and group-level variation in
estimating group-level regression coefficients

» Modeling variation among individual-level regression
coefficients

» Estimating regression coefficients for particular groups
Drawbacks:
» Complexity

» Additional modeling assumptions: each level of the model
must meet regression assumptions



Pooling

Why do multilevel models tend to work well? Equilibrium
between two extremes:

» No pooling: run regression for each group independently
(or fixed effect models)

» Complete pooling: ignore hierarchical structure of the data
(OLS without fixed effects)

In contrast, partial pooling implies groups with fewer
observations borrow strength for groups with more
observations, e.g.:
¥i ~ N(oygy + Bx;, 05) fori=1,...,n
aj ~ N(pta, 02) forj=1,...,J



No pooling Multilevel model
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Figure 12.1 Estimates + standard errors for the average log radon levels in Minnesota
counties plotted versus the (jittered) number of observations in the county: (a) no-pooling
analysis, (b) multilevel (partial pooling) analysis, in both cases with no house-level or
county-level predictors. The counties with fewer measurements have more variable esti-
mates and larger higher standard errors. The horizontal line in each plot represents an
estimate of the average radon level across all counties. The left plot illustrates a problem
with the no-pooling analysis: it systematically causes us to think that certain counties are
more extreme, just because they have smaller sample sizes.



Fitting multilevel models in R (Ime4 package)

Varying-intercept model with no predictors:

ml <- Ilmer (y = 1 + (1 | county) )
Varying-intercept model with individual-level predictor:
ml <- lmer (y - x + (1 | county) )
Varying-slope model with individual-level predictor:

ml <- lmer (y ~ x + (1 + x | county) )

Varying-intercept, varying-slope model with individual-level
predictor:

ml <- lmer (y ~ x + (1 + x|county) + (1]|county))



MRP



MRP

Intuitions:

>

>

Model individual survey responses as a function of
demographic and geographic predictors, partially pooling
respondents across units

Post-stratify: estimates are weighted by the percentage of
each type in the unit

Why is it recommended?

>

Outperforms disaggregation when working with small and
medium-sized samples

Produces reasonably accurate estimates of state public
opinion using as little as N = 1,400

Poststratification corrects for clustering and other statistical
issues that may bias estimates obtained via disaggregation

More informative about determinants of public opinion
Estimate opinion in units rarely surveyed



Mechanics of MRP

1. Gather national opinion poll(s)

2. Partition the population into cells based on
sociodemographic characteristics

3. Create a separate dataset of state-level predictors.
4. Collect census data to enable poststratification.

5. Fit a regression model for an individual survey response
given demographics and geography

it~ d
Pr(y; = 1) =logit " (a+ B 5™ 4 Bt
B;B[(%uc + ﬁzﬁte + ﬁg[el?r)
:tate ~ N(a;;[géon + Brellg I'ehgs, State) fors—1.... .51

6. Poststratify the demographic-geographic types: compute
cell-level estimates and weight by proportion in population



