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Today

1. Solutions for last week’s challenge
2. Discussion: survey research in the digital age
3. Multilevel regression
4. Multilevel regression and post-stratification
5. MRP with R



Multilevel regression and
post-stratification



Credit where it’s due

References for the materials in these slides:

I Course materials for “Applied Multilevel Regression” by
Zoltan Fazekas

I Gelman and Hill, 2007, “Data Analysis Using Regression
and Multilevel/Hierarchical Models”, Cambridge University
Press

I Kastellec et al, 2016, “Estimating State Public Opinion
With Multi-Level Regression and Poststratification using R”



How many survey respondents would you need
to identify with 0.05 significance and 80% power

a difference of 4 percentage points in vote
share?



> power.prop.test(p1=0.48, p2=0.52, power=0.80,
sig.level=0.05)

Two-sample comparison of proportions power
calculation

n = 2451.596
p1 = 0.48
p2 = 0.52

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group



Small-area estimation

Common issue in survey research: interest in estimates of
public opinion for subnational units, but small sample size
means high margins of error.
Solutions?

1. Aggregate multiple small-sample polls and compute
weighted average to reduce noise

I Fivethirtyeight model
I Add prior information and model correlations across states

(assuming common shifts in vote shares)

2. Multilevel-regression with post-stratification (MRP):
I Model relationship between demographic/political variables

and outcomes of interest
I Compute cell-level estimates of outcome variable
I Use population weights to aggregate cell-level estimates



MRP works

YouGov’s 2017 UK election predictions, by Ben Lauderdale,
Doug Rivers, and Jack Blumenau

https://yougov.co.uk/news/2017/05/31/yougov-election-model-q/
https://yougov.co.uk/news/2017/05/31/yougov-election-model-q/


Multilevel regression
models



Motivation
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Quick summary

I Multilevel (hierarchical) modeling is a generalization of
linear and generalized linear modeling in which data is
structured in groups and regression coefficients
themselves can vary by group, as a function of parameters
also estimated from data (Gelman and Hill 2007).

I . . . researchers should be aware that multilevel models are
data intensive & [. . . ] we should be equally aware that
multilevel models are theory intensive (Steenbergen and
Jones 2002, p.234).

I This does not only mean estimation complexity, it also
means complexity in interpretation: how to get quantities of
interest, how these should be interpreted, which element of
the model tells the real story, etc.



Basics of multilevel modeling

I Applicable when our data has a hierarchical structure,
where level-1 observations are nested within level-2

I For example:
I L1 individuals - L2 countries, districts, regions, etc. - very

common in comparative political science
I L1 measurement - L2 individuals - panel setting
I Or just TSCS models, for example

I Customarily, n is the sample size/number of observations
for L1, and J is the the sample size/number of
observations for L2

I Do we have n independent observations in reality,
assuming that the data is indeed clustered (or
observations are nested within L2)?



Notation

Standard OLS regression:

yi = Xiβ + εi for i = 1, . . . ,n
OR

yi ∼ N(Xiβ, σ
2) for i = 1, . . . ,n

I y is a vector of length n; we use i to denote the i th row
(observation, i.e., individual)

I k predictors, including constant (we will also denote this α,
or in other notational convention β0)

I X is an n × k matrix of predictors, where X 1
i = 1

I ε, errors assumed to stem from N(0, σ2) – normal
distribution with a mean of 0 and standard deviation σ



Generalizing OLS

varying-intercept model:

yi = αj[i] + Xiβ + εi (1)

varying-slope model:

yi = α+ Xβj[i] + εi (2)

varying-intercept, varying-slope model:

yi = αj[i] + Xβj[i] + εi (3)



Costs and benefits of multilevel modeling

Motivations:
I Accounting for individual- and group-level variation in

estimating group-level regression coefficients
I Modeling variation among individual-level regression

coefficients
I Estimating regression coefficients for particular groups

Drawbacks:
I Complexity
I Additional modeling assumptions: each level of the model

must meet regression assumptions



Pooling

Why do multilevel models tend to work well? Equilibrium
between two extremes:

I No pooling: run regression for each group independently
(or fixed effect models)

I Complete pooling: ignore hierarchical structure of the data
(OLS without fixed effects)

In contrast, partial pooling implies groups with fewer
observations borrow strength for groups with more
observations, e.g.:

yi ∼ N(αj[i] + βxi , σ
2
y ) for i = 1, . . . ,n

αj ∼ N(µα, σ
2
α) for j = 1, . . . , J





Fitting multilevel models in R (lme4 package)

Varying-intercept model with no predictors:

m1 <- lmer (y ˜ 1 + (1 | county) )

Varying-intercept model with individual-level predictor:

m1 <- lmer (y ˜ x + (1 | county) )

Varying-slope model with individual-level predictor:

m1 <- lmer (y ˜ x + (1 + x | county) )

Varying-intercept, varying-slope model with individual-level
predictor:

m1 <- lmer (y ˜ x + (1 + x|county) + (1|county))



MRP



MRP
Intuitions:

I Model individual survey responses as a function of
demographic and geographic predictors, partially pooling
respondents across units

I Post-stratify: estimates are weighted by the percentage of
each type in the unit

Why is it recommended?
I Outperforms disaggregation when working with small and

medium-sized samples
I Produces reasonably accurate estimates of state public

opinion using as little as N = 1,400
I Poststratification corrects for clustering and other statistical

issues that may bias estimates obtained via disaggregation
I More informative about determinants of public opinion
I Estimate opinion in units rarely surveyed



Mechanics of MRP
1. Gather national opinion poll(s)
2. Partition the population into cells based on

sociodemographic characteristics
3. Create a separate dataset of state-level predictors.
4. Collect census data to enable poststratification.
5. Fit a regression model for an individual survey response

given demographics and geography

Pr(yi = 1) = logit−1(α+ β
race, gender
j[i] + β

age
k [i]+

βeduc
l[i] + βstate

s[i] + β
year
p[i] )

βstate
s ∼N(α

region
m[s] + βrelig · religs, σ

2
state), for s = 1, . . . ,51

6. Poststratify the demographic-geographic types: compute
cell-level estimates and weight by proportion in population


