
ECPR Methods Summer School:
Big Data Analysis in the Social Sciences

Pablo Barber

´

a

London School of Economics
pablobarbera.com

Course website:

pablobarbera.com/ECPR-SC105



Efficient data analysis with R





Myths about R as programming language

1. R is an interpreted language, so it must be slow
I Interpreted = executes code directly without compiling
I Compiled code = code executed natively on CPU (fast!)
I BUT: many functions are written in C and C++ and thus run

in fast machine code
I Slow code can be written more efficiently

2. All objects in R are stored in memory
I You cannot open datasets larger than RAM
I BUT: most laptops now have 8+ GB of RAM (+virtual mem)
I bigmemory package: work with files on disk
I Easy to work with large databases in the cloud

3. R only uses one core of your CPU
I Unlike STATA, no multi-core computing out of the box
I BUT: many functions and packages now take advantage of

multi-core computers
I Easy to write your own code to do parallel computing

https://cran.r-project.org/web/packages/bigmemory/index.html


My data is too big! My code is too slow!

What to do?

1. Buy a better computer or expand RAM memory
2. Write more efficient code
3. Use parallel computing
4. Move your code/data to the cloud
5. Use out-of-memory storage: SQL databases, bigmemory

package, Hadoop...



Writing efficient R code (Part I)

I Conventional wisdom: avoid for loops at all costs!
I But simply rewriting loops will not make code faster
I Key: use vectorized functions instead of loops
I What is slowing our code down?

I Additional function calls: for, :, [, <-
I sapply hides explicit loop, but loop is still there, and

implemented in R code
I Why was + so fast? Implements vectorization by vector

filtering
I Takes vector as input and return vector as output
I Loop is done in machine native code
I Other vectorized functions: ifelse(), which(),
rowSums(), colSums(), sum(), any(), rnorm()...



Writing efficient R code (Part II)

I A common bottleneck is memory re-allocation, e.g.:
result <- c()
for (i in 1:n){

result[i] <- x[i] + y[i]
}

I In iteration, R re-sizes the vector and re-allocates memory
I For large operations (e.g. data frames), this can make your

code really slow
I Solution: pre-allocate vector size:
result <- rep(NA, n)
for (i in 1:n){

result[i] <- x[i] + y[i]
}



Parallel computing

Some hardware terms:
I Node: a single motherboard, with possibly multiple

processors
I Processor: silicon containing one or more cores
I Core: unit of computation
I Most modern CPUs (processors) have multiple cores



Logic of parallel computing

Split-apply-combine framework
(Hadley Wickham and others):

I Split your code and data
across multiple
nodes/processors/cores

I Apply computation in each
region

I Combine the individual
results into an aggregate
answer



Logic of parallel computing

I BUT: overhead (e.g. splitting and combining data also take
some time, no free lunch!)

I Works best with embarrassingly parallel problems:
I Statistical simulation using multiple seeds
I Word counts in documents
I Cross-validation or ensemble learning
I Rule-of-thumb: can you change the order of the iterations

without altering the result?
I Sometimes problematic: applying on subsets of data, or

when full dataset is needed in each node
I Not parallelizable: Markov-Chain Monte-Carlo methods,

cumulative sums, etc.



Parallel computing

Source: Vega Yon and Garrett Weaver, 2017

https://github.com/USCbiostats/software-dev/tree/master/happy_scientist/parallel_computing


Parallel computing in R

Two main approaches:
1. R packages

I parallel: built-in package with support for parallel
computation, including random-number generation (good
for statistical simulation)

I foreach: new type of loops that supports parallel
execution (good for data analysis)

I iterators: tools for iterating over various R data
structures (more advanced)

2. Running C++ code in R:
I RcppArmadillo: interact with C++ linear algebra library
I OpenMP: utility to improve multiprocessing using shared

memory; works across all platforms

And many others (e.g. Spark, Hadoop, RcppParallel...) we will
not cover in this course. See the High-Performance and Parallel
Computing Task View
For more: see slides+code by Vega Yon and Garrett Weaver

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://github.com/USCbiostats/software-dev/tree/master/happy_scientist/parallel_computing

