To familiarize ourselves with social network analysis before we turn to social media, we will looking at a network from the book ``A Storm of Words’’, the third book in the Song of Ice and Fire series by George R.R. Martin.
The source of this dataset is this blog post. Each character in the book will be a different nodes. Each edge between two characters indicates their names appeared within 15 words of one another in the text of the book.
The first step is to read the list of edges in this network:
## Source Target Weight
## 1 Aemon Grenn 5
## 2 Aemon Samwell 31
## 3 Aerys Jaime 18
## 4 Aerys Robert 6
## 5 Aerys Tyrion 5
## 6 Aerys Tywin 8
How do we convert this dataset into a network object in R? There are multiple packages to work with networks, but the most popular is igraph
because it’s very flexible and easy to do, and in my experience it’s much faster and scales well to very large networks. Other packages that you may want to explore are sna
and networks
.
Now, how do we create the igraph object? We can use the graph_from_data_frame
function:
g <- graph_from_data_frame(d=edges, directed=FALSE)
g
## IGRAPH d76037d UN-- 107 352 --
## + attr: name (v/c), Weight (e/n)
## + edges from d76037d (vertex names):
## [1] Aemon --Grenn Aemon --Samwell Aerys --Jaime
## [4] Aerys --Robert Aerys --Tyrion Aerys --Tywin
## [7] Alliser--Mance Amory --Oberyn Arya --Anguy
## [10] Arya --Beric Arya --Bran Arya --Brynden
## [13] Arya --Cersei Arya --Gendry Arya --Gregor
## [16] Arya --Jaime Arya --Joffrey Arya --Jon
## [19] Arya --Rickon Arya --Robert Arya --Roose
## [22] Arya --Sandor Arya --Thoros Arya --Tyrion
## + ... omitted several edges
What does it mean? - U
means undirected
- N
means named graph
- 107
is the number of nodes
- 352
is the number of edges
- name (v/c)
means name is a node attribute and it’s a character
- weight (e/n)
means weight is an edge attribute and it’s numeric
This is how you access specific elements within the igraph object:
V(g) # nodes
## + 107/107 vertices, named, from d76037d:
## [1] Aemon Aerys Alliser Amory Arya
## [6] Balon Belwas Beric Bran Brienne
## [11] Bronn Brynden Catelyn Cersei Craster
## [16] Daario Daenerys Davos Eddard Eddison
## [21] Edmure Gendry Gilly Gregor Hodor
## [26] Hoster Irri Jaime Janos Joffrey
## [31] Jojen Jon Jon Arryn Jorah Kevan
## [36] Loras Lothar Luwin Lysa Mance
## [41] Meera Melisandre Meryn Missandei Myrcella
## [46] Oberyn Podrick Rattleshirt Renly Rhaegar
## + ... omitted several vertices
V(g)$name # names of each node
## [1] "Aemon" "Aerys" "Alliser" "Amory"
## [5] "Arya" "Balon" "Belwas" "Beric"
## [9] "Bran" "Brienne" "Bronn" "Brynden"
## [13] "Catelyn" "Cersei" "Craster" "Daario"
## [17] "Daenerys" "Davos" "Eddard" "Eddison"
## [21] "Edmure" "Gendry" "Gilly" "Gregor"
## [25] "Hodor" "Hoster" "Irri" "Jaime"
## [29] "Janos" "Joffrey" "Jojen" "Jon"
## [33] "Jon Arryn" "Jorah" "Kevan" "Loras"
## [37] "Lothar" "Luwin" "Lysa" "Mance"
## [41] "Meera" "Melisandre" "Meryn" "Missandei"
## [45] "Myrcella" "Oberyn" "Podrick" "Rattleshirt"
## [49] "Renly" "Rhaegar" "Rickard" "Rickon"
## [53] "Robb" "Robert" "Robert Arryn" "Roose"
## [57] "Samwell" "Sandor" "Sansa" "Shae"
## [61] "Shireen" "Stannis" "Tommen" "Tyrion"
## [65] "Tywin" "Val" "Varys" "Viserys"
## [69] "Walder" "Walton" "Ygritte" "Grenn"
## [73] "Anguy" "Thoros" "Barristan" "Illyrio"
## [77] "Nan" "Theon" "Jeyne" "Petyr"
## [81] "Roslin" "Elia" "Ilyn" "Pycelle"
## [85] "Karl" "Drogo" "Aegon" "Kraznys"
## [89] "Rakharo" "Worm" "Cressen" "Salladhor"
## [93] "Qyburn" "Bowen" "Margaery" "Dalla"
## [97] "Orell" "Qhorin" "Styr" "Lancel"
## [101] "Olenna" "Marillion" "Ellaria" "Mace"
## [105] "Ramsay" "Chataya" "Doran"
E(g) # edges
## + 352/352 edges from d76037d (vertex names):
## [1] Aemon --Grenn Aemon --Samwell Aerys --Jaime
## [4] Aerys --Robert Aerys --Tyrion Aerys --Tywin
## [7] Alliser--Mance Amory --Oberyn Arya --Anguy
## [10] Arya --Beric Arya --Bran Arya --Brynden
## [13] Arya --Cersei Arya --Gendry Arya --Gregor
## [16] Arya --Jaime Arya --Joffrey Arya --Jon
## [19] Arya --Rickon Arya --Robert Arya --Roose
## [22] Arya --Sandor Arya --Thoros Arya --Tyrion
## [25] Balon --Loras Belwas --Barristan Belwas --Illyrio
## [28] Beric --Anguy Beric --Gendry Beric --Thoros
## + ... omitted several edges
g[1:10, 1:10] # adjacency matrix
## 10 x 10 sparse Matrix of class "dgCMatrix"
## [[ suppressing 10 column names 'Aemon', 'Aerys', 'Alliser' ... ]]
##
## Aemon . . . . . . . . . .
## Aerys . . . . . . . . . .
## Alliser . . . . . . . . . .
## Amory . . . . . . . . . .
## Arya . . . . . . . 1 1 .
## Balon . . . . . . . . . .
## Belwas . . . . . . . . . .
## Beric . . . . 1 . . . . .
## Bran . . . . 1 . . . . .
## Brienne . . . . . . . . . .
g[1,1:20] # first row of adjacency matrix
## Aemon Aerys Alliser Amory Arya Balon Belwas Beric
## 0 0 0 0 0 0 0 0
## Bran Brienne Bronn Brynden Catelyn Cersei Craster Daario
## 0 0 0 0 0 0 0 0
## Daenerys Davos Eddard Eddison
## 0 0 0 0
What are the most important nodes in a network? We can answer this question computing a metric of centrality.
The most basic measure is degree, the number of adjacent edges to each node. It is often considered a measure of direct influence. In this network, it will be the total number of times each user co-appears with someone else.
sort(degree(g))
## Amory Shireen Walton Illyrio Karl
## 1 1 1 1 1
## Aegon Kraznys Rakharo Worm Cressen
## 1 1 1 1 1
## Salladhor Qyburn Orell Lancel Ramsay
## 1 1 1 1 1
## Doran Jon Arryn Luwin Missandei Rickard
## 1 2 2 2 2
## Anguy Nan Jeyne Bowen Styr
## 2 2 2 2 2
## Olenna Ellaria Chataya Alliser Eddison
## 2 2 2 3 3
## Hoster Robert Arryn Viserys Dalla Marillion
## 3 3 3 3 3
## Mace Aerys Belwas Bronn Daario
## 3 4 4 4 4
## Gendry Gilly Hodor Irri Jojen
## 4 4 4 4 4
## Melisandre Myrcella Rattleshirt Roose Val
## 4 4 4 4 4
## Ygritte Grenn Theon Roslin Pycelle
## 4 4 4 4 4
## Drogo Aemon Craster Davos Lothar
## 4 5 5 5 5
## Meera Podrick Shae Tommen Thoros
## 5 5 5 5 5
## Elia Qhorin Balon Beric Janos
## 5 5 6 6 6
## Jorah Kevan Rhaegar Rickon Barristan
## 6 6 6 6 6
## Ilyn Brienne Meryn Oberyn Varys
## 6 7 7 7 7
## Petyr Margaery Brynden Edmure Renly
## 7 7 8 8 8
## Walder Loras Lysa Eddard Gregor
## 8 9 10 12 12
## Mance Sandor Bran Daenerys Stannis
## 12 13 14 14 14
## Samwell Catelyn Joffrey Robert Arya
## 15 18 18 18 19
## Cersei Tywin Jaime Robb Jon
## 20 22 24 25 26
## Sansa Tyrion
## 26 36
In directed graphs, there are three types of degree: indegree (incoming edges), outdegree (outgoing edges), and total degree. You can compute these using mode="in"
or mode="out"
or mode="total"
.
tail(sort(degree(g, mode="in")))
## Tywin Jaime Robb Jon Sansa Tyrion
## 22 24 25 26 26 36
tail(sort(degree(g, mode="out")))
## Tywin Jaime Robb Jon Sansa Tyrion
## 22 24 25 26 26 36
Here they will be identical because the network is undirected.
Closeness measures how many steps are required to access every other node from a given node. It’s a measure of how long information takes to arrive (who hears news first?), or how easily a node can reach other nodes. Higher values mean less centrality.
tail(sort(closeness(g, normalized=TRUE)))
## Stannis Arya Robb Robert Sansa Tyrion
## 0.4796380 0.4862385 0.4884793 0.5000000 0.5096154 0.5120773
Betweenness measures brokerage or gatekeeping potential. It is (approximately) the number of shortest paths between nodes that pass through a particular node. It defines the importance of a node is in terms of how frequently it connects other nodes.
tail(sort(betweenness(g)))
## Sansa Robb Daenerys Tyrion Robert Jon
## 705.1986 706.5573 874.8372 1101.3850 1165.6025 1279.7534
Let’s now try to describe what a network looks like as a whole. An important measure is edge_density
– the proportion of edges in the network over all possible edges that could exist.
edge_density(g)
## [1] 0.06207018
reciprocity
measures the propensity of each edge to be a mutual edge; that is, the probability that if i
is connected to j
, j
is also connected to i
.
reciprocity(g)
## [1] 1
Why is it 1?
transitivity
, also known as clustering coefficient, measures that probability that adjacent nodes of a network are connected. In other words, if i
is connected to j
, and j
is connected to k
, what is the probability that i
is also connected to k
?
transitivity(g)
## [1] 0.3286615