We’ll now turn to a different type of Twitter data – static data, either recent tweets or user-level information. This type of data can be retrieved with Twitter’s REST API. We will use the tweetscores
package here – this is a package that I created to facilitate the collection and analysis of Twitter data.
It is possible to download recent tweets, but only up those less than 7 days old, and in some cases not all of them.
load("~/my_oauth")
library(tweetscores)
## Loading required package: R2WinBUGS
## Loading required package: coda
## Loading required package: boot
## ##
## ## tweetscores: tools for the analysis of Twitter data
## ## Pablo Barbera (LSE)
## ## www.tweetscores.com
## ##
library(streamR)
## Loading required package: RCurl
## Loading required package: bitops
## Loading required package: rjson
## Warning: package 'rjson' was built under R version 3.4.4
## Loading required package: ndjson
## Warning: package 'ndjson' was built under R version 3.4.4
searchTweets(q=c("brexit", "survey"),
filename="~/data/survey-tweets.json",
n=1000, until="2018-07-31",
oauth=my_oauth)
## 100 tweets. Max id: 1024082209102282752
## 168 hits left
## 200 tweets. Max id: 1024081776484839424
## 167 hits left
## 300 tweets. Max id: 1024081377489313792
## 166 hits left
## 400 tweets. Max id: 1024080981903458304
## 165 hits left
## 500 tweets. Max id: 1024080636372504576
## 164 hits left
## 600 tweets. Max id: 1024080257140379648
## 163 hits left
## 700 tweets. Max id: 1024079875890716672
## 162 hits left
## 800 tweets. Max id: 1024079568678936576
## 161 hits left
## 900 tweets. Max id: 1024079294723760128
## 160 hits left
## 1000 tweets. Max id: 1024079085377441792
tweets <- parseTweets("~/data/survey-tweets.json")
## 1000 tweets have been parsed.
What are the most popular hashtags?
library(stringr)
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #Brexit #brexit #PeoplesVote #BREXIT #LoveIsland
## 120 25 17 13 11
## #newsnight
## 8
You can check the documentation about the options for string search here.
This is how you would extract information from user profiles:
wh <- c("realDonaldTrump", "POTUS", "VP", "FLOTUS")
users <- getUsersBatch(screen_names=wh,
oauth=my_oauth)
## 1--4 users left
str(users)
## 'data.frame': 4 obs. of 9 variables:
## $ id_str : chr "818876014390603776" "25073877" "822215679726100480" "818910970567344128"
## $ screen_name : chr "FLOTUS" "realDonaldTrump" "POTUS" "VP"
## $ name : chr "Melania Trump" "Donald J. Trump" "President Trump" "Vice President Mike Pence"
## $ description : chr "This account is run by the Office of First Lady Melania Trump. Tweets may be archived. More at https://t.co/eVVzoBb3Zr" "45th President of the United States of America\U0001f1fa\U0001f1f8" "45th President of the United States of America, @realDonaldTrump. Tweets archived: https://t.co/eVVzoBb3Zr" "Vice President Mike Pence. Husband, father, & honored to serve as the 48th Vice President of the United States."| __truncated__
## $ followers_count: int 10714631 53444080 23682056 6432401
## $ statuses_count : int 345 38408 3655 4642
## $ friends_count : int 6 47 39 11
## $ created_at : chr "Tue Jan 10 17:43:50 +0000 2017" "Wed Mar 18 13:46:38 +0000 2009" "Thu Jan 19 22:54:28 +0000 2017" "Tue Jan 10 20:02:44 +0000 2017"
## $ location : chr "Washington, D.C." "Washington, DC" "Washington, D.C." "Washington, D.C."
Which of these has the most followers?
users[which.max(users$followers_count),]
## id_str screen_name name
## 2 25073877 realDonaldTrump Donald J. Trump
## description
## 2 45th President of the United States of America\U0001f1fa\U0001f1f8
## followers_count statuses_count friends_count
## 2 53444080 38408 47
## created_at location
## 2 Wed Mar 18 13:46:38 +0000 2009 Washington, DC
users$screen_name[which.max(users$followers_count)]
## [1] "realDonaldTrump"
Download up to 3,200 recent tweets from a Twitter account:
getTimeline(filename="~/data/realDonaldTrump.json", screen_name="realDonaldTrump", n=1000, oauth=my_oauth)
## 200 tweets. Max id: 1018956970143858688
## 893 hits left
## 400 tweets. Max id: 1011577303023980544
## 892 hits left
## 600 tweets. Max id: 1006286790536323074
## 891 hits left
## 800 tweets. Max id: 999626347361206274
## 890 hits left
## 1000 tweets. Max id: 989834048796266498
What are the most common hashtags?
tweets <- parseTweets("~/data/realDonaldTrump.json")
## 1000 tweets have been parsed.
ht <- str_extract_all(tweets$text, "#(\\d|\\w)+")
ht <- unlist(ht)
head(sort(table(ht), decreasing = TRUE))
## ht
## #MAGA #1 #HELSINKI2018 #RightToTry #G7Summit
## 15 5 4 4 3
## #SCOTUS
## 3
Download friends and followers:
followers <- getFollowers("ECPR",
oauth=my_oauth)
## 12 API calls left
## 5000 followers. Next cursor: 1556878267714917122
## 11 API calls left
## 10000 followers. Next cursor: 1464105674343453827
## 10 API calls left
## 13172 followers. Next cursor: 0
## 9 API calls left
friends <- getFriends("ECPR",
oauth=my_oauth)
## 12 API calls left
## 1072 friends. Next cursor: 0
## 11 API calls left
What are the most common words that friends of the ECPR account use to describe themselves on Twitter?
# extract profile descriptions
users <- getUsersBatch(ids=friends, oauth=my_oauth)
## 1--1072 users left
## 2--972 users left
## 3--872 users left
## 4--772 users left
## 5--672 users left
## 6--572 users left
## 7--472 users left
## 8--372 users left
## 9--272 users left
## 10--172 users left
## 11--72 users left
# create table with frequency of word use
library(quanteda)
## Warning: package 'quanteda' was built under R version 3.4.4
## Package version: 1.3.0
## Parallel computing: 2 of 4 threads used.
## See https://quanteda.io for tutorials and examples.
##
## Attaching package: 'quanteda'
## The following object is masked from 'package:utils':
##
## View
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, remove=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"),
remove_punct=TRUE)
topfeatures(dfm, n = 30)
## politics university political research international
## 267 267 256 176 137
## science professor social european policy
## 130 107 97 92 76
## relations studies twitter tweets official
## 69 67 65 64 63
## public department sciences lecturer news
## 57 55 54 51 51
## account school centre institute der
## 48 46 43 41 41
## uk scientist editor eu director
## 40 39 38 36 36
# create wordcloud
par(mar=c(0,0,0,0))
textplot_wordcloud(dfm, rotation=0, min_size=1, max_size=5, max_words=100)
The tweetscores
package also includes functions to replicate the method developed in the Political Analysis paper Birds of a Feather Tweet Together. Bayesian Ideal Point Estimation Using Twitter Data. For an application of this method, see also this Monkey Cage blog post.
# download list of friends for an account
user <- "DonaldJTrumpJr"
friends <- getFriends(user, oauth=my_oauth)
## 11 API calls left
## 1260 friends. Next cursor: 0
## 10 API calls left
# estimating ideology with correspondence analysis method
(theta <- estimateIdeology2(user, friends, verbose=FALSE))
## DonaldJTrumpJr follows 140 elites: ABC, AEI, ajam, AlbertBrooks, AllenWest, AmbJohnBolton, andersoncooper, AndreaTantaros, AnnCoulter, AP, AriFleischer, azizansari, BBCBreaking, BBCWorld, benshapiro, BillyHallowell, BreakingNews, BreitbartNews, BretBaier, brithume, BuzzFeed, ByronYork, CharlieDaniels, chrisrock, chucktodd, chuckwoolery, CNBC, CNN, cnnbrk, DailyCaller, DanaPerino, daveweigel, davidgregory, DennisDMZ, DineshDSouza, DRUDGE, DRUDGE_REPORT, ericbolling, FareedZakaria, FinancialTimes, ForAmerica, Forbes, foxandfriends, FoxNews, foxnewspolitics, funnyordie, gatewaypundit, Gawker, ggreenwald, GOP, gopleader, GovChristie, GovernorPerry, GovMikeHuckabee, greggutfeld, GStephanopoulos, hardball_chris, Heritage, HeyTammyBruce, HouseGOP, howardfineman, HuffingtonPost, iamjohnoliver, IngrahamAngle, iowahawkblog, JamesOKeefeIII, JamesRosenFNC, jasoninthehouse, jim_jordan, JimDeMint, jimmyfallon, Judgenap, JudicialWatch, kanyewest, KatiePavlich, kilmeade, kimguilfoyle, krauthammer, KurtSchlichter, larryelder, loudobbsnews, LukeRussert, marcorubio, marklevinshow, MarkSteynOnline, marthamaccallum, michellemalkin, mitchellreports, MittRomney, MonicaCrowley, NASA, neiltyson, newsbusters, newtgingrich, NolteNC, NRA, NRO, nytimes, oreillyfactor, politico, ppppolls, RealBenCarson, realDonaldTrump, RealJamesWoods, Reince, repdianeblack, reploubarletta, replouiegohmert, reppaulryan, Reuters, SarahPalinUSA, scrowder, seanhannity, secupp, Senate_GOPs, senmikelee, sentedcruz, ShannonBream, SharylAttkisson, stevekingia, SteveMartinToGo, tamronhall, TeamCavuto, tedcruz, TedNugent, TEDTalks, tgowdysc, TheAtlantic, TheEconomist, TheOnion, ThomasSowell, TODAYshow, townhallcom, TuckerCarlson, TwitchyTeam, VanityFair, washingtonpost, wikileaks, WSJ, YoungCons
## [1] 1.437454
# download list of friends for an account
user <- "realDonaldTrump"
friends <- getFriends(user, oauth=my_oauth)
## 10 API calls left
## 47 friends. Next cursor: 0
## 9 API calls left
# estimating ideology with correspondence analysis method
(theta <- estimateIdeology2(user, friends, verbose=FALSE))
## realDonaldTrump follows 10 elites: AnnCoulter, DRUDGE_REPORT, ericbolling, foxandfriends, IngrahamAngle, oreillyfactor, piersmorgan, Reince, seanhannity, TuckerCarlson
## [1] 1.833987
The REST API offers also a long list of other endpoints that could be of use at some point, depending on your research interests.
users <- searchUsers(q="ecpr", count=100, oauth=my_oauth)
users$screen_name[1:10]
## [1] "ECPR" "ECPRMethods" "ECPR_PolCom" "ECPR_SGEU"
## [5] "EPSRjournal" "jamayoralda" "littvay" "ECPRKnowledge"
## [9] "ECPR_SGOC" "ECPR_Migration"
# Downloading tweets when you know the ID
getStatuses(ids=c("474134260149157888", "266038556504494082"),
filename="~/data/old-tweets.json",
oauth=my_oauth)
## 899 API calls left
## 898 API calls left
parseTweets("~/data/old-tweets.json")
## 2 tweets have been parsed.
## text
## 1 Are you allowed to impeach a president for gross incompetence?
## 2 The electoral college is a disaster for a democracy.
## retweet_count favorite_count favorited truncated id_str
## 1 NA NA FALSE FALSE 474134260149157888
## 2 NA NA FALSE FALSE 266038556504494082
## in_reply_to_screen_name
## 1 NA
## 2 NA
## source
## 1 <a href="http://twitter.com/download/android" rel="nofollow">Twitter for Android</a>
## 2 <a href="http://twitter.com" rel="nofollow">Twitter Web Client</a>
## retweeted created_at in_reply_to_status_id_str
## 1 FALSE Wed Jun 04 10:23:11 +0000 2014 NA
## 2 FALSE Wed Nov 07 04:45:09 +0000 2012 NA
## in_reply_to_user_id_str lang listed_count verified location
## 1 NA en 91423 TRUE Washington, DC
## 2 NA en 91423 TRUE Washington, DC
## user_id_str
## 1 25073877
## 2 25073877
## description
## 1 45th President of the United States of America\U0001f1fa\U0001f1f8
## 2 45th President of the United States of America\U0001f1fa\U0001f1f8
## geo_enabled user_created_at statuses_count
## 1 TRUE Wed Mar 18 13:46:38 +0000 2009 38408
## 2 TRUE Wed Mar 18 13:46:38 +0000 2009 38408
## followers_count favourites_count protected user_url
## 1 53444082 25 FALSE https://t.co/OMxB0x7xC5
## 2 53444082 25 FALSE https://t.co/OMxB0x7xC5
## name time_zone user_lang utc_offset friends_count
## 1 Donald J. Trump NA en NA 47
## 2 Donald J. Trump NA en NA 47
## screen_name country_code country place_type full_name place_name
## 1 realDonaldTrump NA NA NA NA NA
## 2 realDonaldTrump NA NA NA NA NA
## place_id place_lat place_lon lat lon expanded_url url
## 1 NA NaN NaN NA NA NA NA
## 2 NA NaN NaN NA NA NA NA
# download user information from a list
MCs <- getList(list_name="new-members-of-congress",
screen_name="cspan", oauth=my_oauth)
## 897 API calls left
## 20 users in list. Next cursor: 5427698142933319684
## 896 API calls left
## 40 users in list. Next cursor: 4611686021745187729
## 895 API calls left
## 60 users in list. Next cursor: 0
## 894 API calls left
head(MCs)
## id id_str name screen_name
## 1 8.272798e+17 827279765287559171 Rep. Mike Johnson RepMikeJohnson
## 2 8.235530e+17 823552974253342721 Anthony G. Brown RepAnthonyBrown
## 3 8.171385e+17 817138492614524928 Ted Budd RepTedBudd
## 4 8.170763e+17 817076257770835968 Adriano Espaillat RepEspaillat
## 5 8.170502e+17 817050219007328258 Rep. Blunt Rochester RepLBR
## 6 8.168339e+17 816833925456789505 Nanette D. Barragán RepBarragan
## location
## 1 Washington, DC
## 2 Washington, DC
## 3 Davie County, North Carolina
## 4 https://www.facebook.com/Congr
## 5 Delaware, USA - Washington, DC
## 6 San Pedro, CA
## description
## 1 Proudly serving Louisiana's 4th Congressional District. Member on @HouseJudiciary & @NatResources.
## 2 Congressman proudly representing Maryland's Fourth District. Member of @HASCDemocrats & @NRDems. Father, husband & retired @USArmyReserve Colonel
## 3 Proudly serving the 13th district of North Carolina. #NC13
## 4 U. S. Representative proudly serving New York’s 13th Congressional District. Follow my work in Washington and #NY13
## 5 Official Twitter page for U.S. Representative Lisa Blunt Rochester (D-DE). Tweets from Rep. Blunt Rochester signed -LBR.
## 6 Official account. Honored to represent California's 44th Congressional District. #CA44 Member of the @HispanicCaucus @USProgressives @Dodgers fan.
## url followers_count friends_count
## 1 https://t.co/qLAyhrFbRl 3517 402
## 2 https://t.co/2u5X332ICM 10326 849
## 3 https://t.co/VTsvWe0pia 5579 195
## 4 https://t.co/lcRqmQFAbz 10924 1257
## 5 https://t.co/Fe3XCG51wO 7421 317
## 6 https://t.co/Mt3nPi7hSH 8266 618
## created_at time_zone lang
## 1 Thu Feb 02 22:17:20 +0000 2017 NA en
## 2 Mon Jan 23 15:28:24 +0000 2017 NA en
## 3 Thu Jan 05 22:39:33 +0000 2017 NA en
## 4 Thu Jan 05 18:32:15 +0000 2017 NA en
## 5 Thu Jan 05 16:48:47 +0000 2017 NA en
## 6 Thu Jan 05 02:29:18 +0000 2017 NA en
This is also useful if e.g. you’re interested in compiling lists of journalists, because media outlets offer these lists in their profiles.
# Download list of users who retweeted a tweet (unfortunately, only up to 100)
rts <- getRetweets(id='942123433873281024', oauth=my_oauth)
## 74 API calls left
## 75 retweeters. Next cursor: 0
## 73 API calls left
# https://twitter.com/realDonaldTrump/status/942123433873281024
users <- getUsersBatch(ids=rts, oauth=my_oauth)
## 1--75 users left
# create table with frequency of word use
library(quanteda)
tw <- corpus(users$description[users$description!=""])
dfm <- dfm(tw, remove=c(stopwords("english"), stopwords("spanish"),
"t.co", "https", "rt", "rts", "http"),
remove_punct = TRUE)
# create wordcloud
par(mar=c(0,0,0,0))
textplot_wordcloud(dfm, rot.per=0, scale=c(3, .50), max.words=100)
## Warning: scalemax.wordsrot.per is deprecated; use min_size and
## max_sizemax_wordsrotation instead
# format Twitter dates to facilitate analysis
tweets <- parseTweets("~/data/realDonaldTrump.json")
## 1000 tweets have been parsed.
tweets$date <- formatTwDate(tweets$created_at, format="date")
hist(tweets$date, breaks="month")
# adapted from the botcheck package by @marsha5814
botometer = function(user, my_oauth, mashape_key, verbose=TRUE) {
require(httr)
# creating OAuth token
myapp = oauth_app("twitter", key=my_oauth$consumer_key,
secret=my_oauth$consumer_secret)
sig = sign_oauth1.0(myapp, token=my_oauth$access_token,
token_secret=my_oauth$access_token_secret)
users_url = "https://api.twitter.com/1.1/users/show.json?screen_name="
statuses_url = "https://api.twitter.com/1.1/statuses/user_timeline.json?screen_name="
search_url = "https://api.twitter.com/1.1/search/tweets.json?q=%40"
opts = "&count=200"
# API call to get user
if (verbose) message("Downloading user profile...")
userdata = GET(paste0(users_url,user,opts), sig)
# API call to get tweets
if (verbose) message("Downloading user tweets...")
tweets = GET(paste0(statuses_url,user,opts), sig)
# API call to get mentions
if (verbose) message("Downloading user mentions...")
mentions = GET(paste0(search_url,user,opts), sig)
# Put everything in a list
body = list(
timeline = content(tweets, type="application/json"),
mentions = content(mentions, type="application/json"),
user = content(userdata, type="application/json")
)
# Convert to JSON
body_json = RJSONIO::toJSON(body, auto_unbox = T, pretty = T)
# Make the API request
if (verbose) message("Checking Botometer scores...")
result = POST("https://osome-botometer.p.mashape.com/2/check_account",
encode="json",
add_headers(`X-Mashape-Key`=mashape_key),
body=body_json)
# Parse result
result = content(result, as = "parsed")
# Return "English" score
return(result)
}
results <- botometer("ECPR", my_oauth,
mashape_key = 'Ujq7AAd3igmshqCBvI1LWbz0J8Hlp1hvVOYjsnMOx8z6bg4U68')
## Loading required package: httr
## Downloading user profile...
## Downloading user tweets...
## Downloading user mentions...
## Checking Botometer scores...
results$scores
## $english
## [1] 0.1167954
##
## $universal
## [1] 0.3742668
results$categories
## $content
## [1] 0.431992
##
## $friend
## [1] 0.2975815
##
## $network
## [1] 0.09863455
##
## $sentiment
## [1] 0.2517499
##
## $temporal
## [1] 0.09933142
##
## $user
## [1] 0.06746011
results <- botometer("realDonaldTrump", my_oauth,
mashape_key = 'Ujq7AAd3igmshqCBvI1LWbz0J8Hlp1hvVOYjsnMOx8z6bg4U68')
## Downloading user profile...
## Downloading user tweets...
## Downloading user mentions...
## Checking Botometer scores...
results$scores
## $english
## [1] 0.03546593
##
## $universal
## [1] 0.03798014
results$categories
## $content
## [1] 0.0580824
##
## $friend
## [1] 0.1782331
##
## $network
## [1] 0.09336611
##
## $sentiment
## [1] 0.08157836
##
## $temporal
## [1] 0.05938086
##
## $user
## [1] 0.02392906
results <- botometer("everyword", my_oauth,
mashape_key = 'Ujq7AAd3igmshqCBvI1LWbz0J8Hlp1hvVOYjsnMOx8z6bg4U68')
## Downloading user profile...
## Downloading user tweets...
## Downloading user mentions...
## Checking Botometer scores...
results$scores
## $english
## [1] 0.2691022
##
## $universal
## [1] 0.182079
results$categories
## $content
## [1] 0.1584955
##
## $friend
## [1] 0.4036753
##
## $network
## [1] 0.5538789
##
## $sentiment
## [1] 0.4608188
##
## $temporal
## [1] 0.5984031
##
## $user
## [1] 0.1447754
results <- botometer("Horse_3books", my_oauth,
mashape_key = 'Ujq7AAd3igmshqCBvI1LWbz0J8Hlp1hvVOYjsnMOx8z6bg4U68')
## Downloading user profile...
## Downloading user tweets...
## Downloading user mentions...
## Checking Botometer scores...
results$scores
## $english
## [1] 0.7238002
##
## $universal
## [1] 0.182079
results$categories
## $content
## [1] 0.9036625
##
## $friend
## [1] 0.8049524
##
## $network
## [1] 0.9044903
##
## $sentiment
## [1] 0.8849749
##
## $temporal
## [1] 0.8287204
##
## $user
## [1] 0.1649844
Now time for another challenge!